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Abstract: An awareness of the likely future behaviour of a batch or fed-batch fermentation 
process is valuable information that can be exploited to improve product consistency and 
maximise profitability. For example, by making operational policy changes in a 
feedforward control sense, improved consistency can be facilitated, whilst prior 
knowledge of batch productivity, or the end time, can help determine the downstream 
processing configuration and upstream process scheduling. In this paper, forecasting 
methods based on multivariate batch statistical data analysis procedures are contrasted 
with case based reasoning (CBR). Two case studies are considered, fed-batch 
pharmaceutical fermentation and batch beer fermentation. It is demonstrated that 
following appropriate statistical pre-screening of the data, CBR is comparable to linear 
projection to latent structures (PLS) for the more straightforward forecasting problem 
whilst for the more complex problem, CBR is preferable. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 

Batch to batch variation is an issue that all 
fermentation using industries face. Some degree of 
variation is inevitable for processes employing 
biological steps but for large scale fermentation 
processes, that make use of undefined media 
components, the variation can be more significant. 
Variation is accepted, to an extent, through its 
accommodation within validated bioprocess 
operating windows, for those processes subject to 
formal validation. In these, and other, bioprocesses, 
variability is a problem that is tackled to a degree 
with on-line feedback control. For example, the 
regulation of the environment of the fermenter 
through temperature, pH and dissolved oxygen 
control is one means of reducing variability but such 
schemes in some sense tackle the symptoms as 
opposed to the causes of variation. 

Tackling the problem from a control engineer’s 
perspective, the first step is to identify the sources of 
variation, thereafter a means by which their impact 
can be mitigated are investigated and finally, with 
reduced variability achieved, operational 
modifications to enhance financial performance can 
be made. In fermentations, disturbances to process 
operation arise from changes in seed state (Ignova et 
al, 1999), media composition and environmental 
conditions / operational policy. The latter problem is 
minimised by feedback regulation of the environment 

and strict adherence to standard operating policy by 
process operators. To minimise seed state variation 
there again needs to be strict adherence to operating 
policy and the adoption of seed transfer criteria that 
are linked to the physiological state rather than 
simply elapsed time (Neves et al, 2001). Media 
composition variations arise naturally in undefined 
media and tend to be a source of change in 
bioprocess performance. To minimise the impact, 
often the number of suppliers are few and raw 
material assessed with spectroscopic measurements 
to identify suitability based on a raw material 
fingerprint (Scarff et al, 2006). Such measures are 
now more widely applied to determine media quality 
and also identify fermentation endpoint. The reason 
that endpoint detection is necessary is that despite 
stringent operating policies and practices, variability 
still occurs. This can compromise decision making 
with regard to overall process plant behaviour and 
impact on financial performance with uncertainty 
leading to cautiousness.  

The ideal control engineering solution to problems 
caused by variation is to employ a feedforward 
compensation policy, where the impact of measured 
disturbances is predicted using a model and mitigated 
using appropriate process manipulations. In the 
fermentation case, the presence of disturbances is 
detected not through their direct measurement but 
through their impact on performance thus enabling 
the exploitation of a feedforward strategy. If the 
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future behaviour of batches can be anticipated then 
this information can be used proactively to make 
operational decisions that maximise batch 
performance. Methods to achieve potential 
improvements in fermentation batch profitability are 
discussed in Xue and Yuan (2005). Whilst their 
approach considers the strategies to maximise batch 
profitability, it is critical to consider the process as a 
whole. Moving towards process optimisation, rather 
than batch optimisation, requires a predictive 
capability so that, for example, seed vessels can be 
scheduled and downstream processing operations 
operated to capacity. This requires prior knowledge 
of batch performance that can only be gleaned from 
batch behaviour forecasts. Pollanen et al (2001) 
reinforce this observation and discuss how a 
fermentation forecasting tool could be used to 
optimise the process schedule. 

Two case studies demonstrate how forecasting 
algorithms can be used to assess future bioprocess 
conditions. This information can then be utilised by 
operators to make operational policy changes or in a 
decision support role. The first study concerns the 
prediction of performance in the latter stages of the 
batch to modify feed profiles; the second considers 
late batch performance assessment to allow improved 
batch scheduling on a multi-batch vessel site. 
 

2. CASE STUDY EXAMPLES 

2.1 Lager fermentation 

In the lager brewing process, wort is mixed with 
yeast to initiate the production of alcohol. The 
reaction is exothermic and the temperature rises until 
it reaches a control point where it ideally remains 
throughout the batch until the completion criteria are 
satisfied and chilling occurs. The end-point of the 
fermentation is defined by two key variables. The 
first is the present gravity (PG) which measures the 
alcohol content of the brew. More specifically as the 
fermentation progresses, the sugars in the wort are 
converted to alcohol, and the density of the brew 
decreases. Once all of the sugars have been used up, 
the reaction slows down and the PG reaches a 
plateau. The second key variable is diacetyl 
concentration (2,3-pentanedione). Diacetyl is a small 
flavour active molecule often described as a 
butterscotch or honey tone, and is a by-product of 
yeast amino-acid metabolism. High concentrations of 
diacetyl are undesirable, especially when brewing 
lagers, as lagers tend not to have a strong flavour. 
However, once the yeast has finished fermenting the 
sugars, it will re-absorb the diacetyl from the beer. 
This process is known as the ‘diacetyl rest’.  

Although the main processing steps involved in the 
industrial scale production of beer are well 
established, the length of the brewing process is 
subject to natural variation. This is mainly due to 
changes in fermentation length as most other stages 
have well defined processing times.  

 
Fig. 1. Process batch trends (lager fermentation) 

Early prediction of the fermentation endpoint is thus 
valuable information allowing tighter scheduling of 
downstream operations such as bottling and canning, 
reduced turnaround time for fermentation vessels and 
ultimately, an increase in annual plant throughput. In 
this study, the need to predict the end-point arising 
from the PG specification was more critical from a 
timing perspective than diacetyl considerations and 
the prediction results focus on PG forecasting. 

Typical batch trends from the lager fermentation are 
shown in Fig. 1. The rise in temperature to the 
controlled level as the fermentation progresses along 
with the fall in PG to satisfy the endpoint 
specification at around 120 hours can be observed. 
PG measurements are obtained through off-line 
analysis at a frequency of approximately eight hours. 
The diacetyl measurements are less frequent and, in 
this case, only two were made, with the latter 
confirming that levels had fallen below the diacetyl 
constraint. This measurement is obtained from off-
line analysis and the satisfaction of the diacetyl 
endpoint is also confirmed by taste testing. 

2.2 Antibiotic fermentation 

The second case study addresses improvements in the 
operational policy for a fed-batch fermentation 
process producing an antibiotic.  A substrate is fed to 
the batch following the initial biomass accumulation 
period. The substrate concentration in the batch is 
controlled by the operators taking samples for off-
line analysis and adjusting the substrate feed-rate to 
maintain the concentration at a level that maximises 
product formation. Towards the end of the batch, 
product formation slows down and the batch is 
terminated and the broth is sent to downstream 
processing for product recovery. 
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Fig. 2. Typical batch trends (antibiotic fermentation) 
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To minimise the substrate concentration in 
downstream processing, the substrate feed is 
terminated before the end of the batch and 
concentration falls as it is consumed for product 
formation. Typical batch trends are shown in Fig. 2.  

A target end of batch substrate concentration has 
been specified. If the concentration falls below the 
target value, product accumulation rates fall 
significantly. This effect can be observed in Fig. 2 
where the product concentration falls, between 300 
and 320 hours, as a result of the substrate feed being 
terminated too early. Alternatively, if the substrate 
feed had been cut too late the substrate concentration 
would have been above the target value at the end of 
the batch. In this case, in addition to substrate 
wastage, downstream recovery of product becomes 
less efficient. The substrate feed termination time is 
currently set to be a fixed number of hours before the 
planned end of the batch, implicitly assuming that the 
batch behaves in a consistent manner. However, 
batch to batch variability results in changes in 
substrate concentration and usage rates. As a 
consequence, it is necessary to adjust the substrate 
feed termination time to compensate for batch 
variations. To do so requires a prediction of usage 
rates up to the end of the batch. 
 
 

3. FORECASTING PROCEDURES 

Both case studies fall within the framework of a 
forecasting problem. In Case Study 1, the problem 
involves forecasting the time a brew will take to 
reach a specified PG using information from the 
early stages of the batch. Case Study 2 concerns the 
forecasting of the rate of substrate usage, again using 
information available from early stages in the batch.  

Two fundamental strategies to address these 
challenges are available: model based or pattern 
based forecasting. In model based forecasting, a 
mathematical description of the process is 
determined from past process batches and used with 
data from the existing batch to identify likely future 
behaviour. The model can be either empirical with 
the parameter values determined using process data 
or it can have mechanistic structure where the 
parameters are related to physical/chemical 
attributes. Trelea et al (2001) compared the 
alternative approaches for the predictive modelling of 
a brewing fermentation and concluded that if 
mechanistic understanding is available it should be 
employed. Karim et al (2003) demonstrated through 
four case studies, the utility of both principal 
component analysis and neural networks in 
fermentation batch performance assessment. The 
black-box neural network approach was found to be 
acceptable even when the number of batches was 
limited. 

Lopes and Menezes (2003) investigated the 
application of tri-linear PLS for the prediction of the 
end-batch concentration of product in an antibiotic 

fermentation. They observed that final productivity 
could be forecast with some accuracy using 
information from a critical mid-stage of the batch. 
Undey et al (2003) applied a similar unfolding 
approach utilising multi-way PLS (MPLS) to predict 
the end-batch concentration in a penicillin 
fermentation in the presence of disturbances or faults. 
The forecasting of end of batch performance to 
reduce batch time and minimise product degradation 
was considered by Sankpal et al (2001). Data from a 
Aspergillus niger fermentation was used to 
demonstrate that productivity can be forecast fifteen 
hours ahead. The forecasting model was developed 
using a symbolic regression method with the 
resulting relationship being a simple autoregressive 
time series.  

For bioprocesses in general, the lack of intimate 
knowledge of structure usually precludes the usage of 
mechanistic approaches. For this reason an empirical 
structure is utilised in this paper. The methodology 
adopted is that of multi-way projection to latent 
structures (PLS). Multi-way PLS is the extension of 
PLS and allows the modelling of batch processes. 

The alternative tactic is to adopt a pattern recognition 
strategy. For example, if the process trends follow a 
particular functional form, but with varying 
parameters, then patterns can be captured from the 
early batch behaviour, functional parameters 
determined and forecasts made using the functional 
patterns identified. Pattern recognition methods have 
been applied to fermentation processes to extract key 
features. For example, Stephanopoulos et al (1997) 
considered a number of algorithms for pattern 
extraction and demonstrated that benefits can be 
gained through their application to multiple 
fermentation examples.  

Rather than using current batch behaviour and 
matching it or fitting some functional form, the 
alternative is to omit this step and match the pattern 
of the current batch to the most similar previous 
batch or batches and use past batches as a predictor 
of current batch performance, i.e. Case Based 
Reasoning (CBR). 

Watson and Marir (1994) presented a review of CBR 
and discussed potential areas of application. Among 
the characteristics of problems suited for the 
application of CBR are that a model of the system is 
not available but numerous historical examples of 
behaviour exist. The fundamental principle behind 
CBR is that the historical records are examined and 
the most similar situations to the current condition 
are used to make decisions. Wastewater treatment is 
a sector that has attracted a significant number of 
applications of CBR. For example, Ruiz et al (2006) 
considered how traditional distance metrics could be 
complemented with multiway principal component 
analysis performance metrics. For the comparison of 
batches They observed that not only does MPCA 
provide useful comparison metrics, it is also 
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appropriate for the detection of batches that 
demonstrate abnormal behaviour. 

Despite numerous publications concerning the 
modelling of fermentation processes, very few have 
considered the application of CBR. This is surprising 
given the complexity of the fermentation process and 
the difficulty in specifying a model based on the 
mechanisms. These sentiments were echoed by 
Roger et al (2002) who studied the application of 
pattern recognition methods to the fermentation of 
wine. It is clear that sophisticated algorithms do 
allow informative patterns to be extracted but if an 
approach such as CBR is available it does have 
benefits, particularly in terms of ease of 
development. In this paper, the utility of the CBR 
approach is contrasted with MPLS. 
 
3.1 Multi-Way Partial Least Squares 

Multi-way partial least squares (Wold et al, 1987) 
relates early batch behaviour to a performance or 
end-point objective. Essentially, a time series of early 
batch behaviour is used to predict the final batch 
condition. Leave-one-out cross validation can be 
applied to make maximum use of limited batch data. 
 
3.2 Case Based Reasoning Procedure 

In CBR, a library of previous process behaviour is 
established. Current process behaviour is then 
compared with previous experience and based on 
past observations and decisions taken in those 
instances, the ‘best’ action to take for the current 
instance is determined. A critical metric in CBR is 
how to determine similarity between cases. In this 
paper, the time progression of the batch needs to be 
taken into account. Two metrics are considered. The 
first is a process variable distance metric: 
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(1) 
The bias term acts to adjust for the offset between 
output profiles. λ acts as a weighting between the 
output and input deviation and N1 and N2 specify the 
window of samples over which the comparison is 
made. ynew and unew are the output and input 
measured variables of the new batch and yhist and 
uhist refer to the CBR library batches. The bias is 
calculated as follows: 
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Predictions of future behaviour of the current batch 
are then made: 

closestclosest biasyhistynew +=  (3) 

where the subscript refers to the closest batch 
selected from the library. An additional threshold 
requirement was imposed to increase accuracy. That 
is the library of examples was constrained to 
comprise those for which the reconstruction predictor 
errors determined from a PLS regression forecast was 

below a threshold. This limitation excluded those 
batches which were significantly different but which 
was not apparent from the weighted distance metric. 

The alternative distance metric considered was based 
on multiway PCA scores. In statistical process 
control, PCA scores plots are frequently used to 
judge similarity between samples. Singhal and 
Seborg (2001) extended this concept and the 
approach taken is a modified metric inspired by their 
studies:  
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Nscores refers to the number of principal components 
retained. The metric assesses, in the scores space, 
batch variability similarity with the distances 
weighted by the variance explained. 
 

4. RESULTS 

4.1 Case Study 1 Results 

Data from 100 beer batches was utilised with PG and 
temperature logged manually. Samples were taken at 
different frequencies, with the sampling interval 
varying between 8 and 24 hours. From a process 
operational perspective, it is important to gain insight 
into the batch completion from around 48 hours. 
Typically 4 to 5 samples have been taken by this time 
and it is this information that is available to forecast 
batch completion time. To equalise the sampling 
frequency for subsequent computational purposes, a 
cubic spline was used to interpolate between samples 
and the data was reconstructed at a 5 hourly sampling 
frequency. Investigations considered the predictive 
ability using information available up to 45 hours. 

A data matrix containing the PG and temperature 
profiles for the first 45 hours was established for all 
100 batches and the time at which each batch 
achieved a PG of 18 determined. Initial analysis of 
the data was carried out using multi-way PCA and 
the results indicated a number of outlying batches. 
Subsequent investigation revealed that temperature 
control problems arose in some batches. Forecasting 
behaviour in the presence of unpredictable 
temperature change is not a practical proposition. 
Consequently to investigate the performance of the 
forecasting algorithms, batches with temperature 
control issues were removed leaving 64 batches. 

The RMS errors associated with PLS and CBR 
forecasts are shown in Table 1. It is clear that the 
CBR approach using the weighted distance metric 
produces results of similar accuracy to PLS. The 
CBR algorithm using the scores based distance 
metric performs less well. In Table 1 CBR1 refers to 
distance metric case selection without employing 
bias removal, i.e. the bias term is set to zero (eqn 1), 
CBR2 is with bias removal (eqs 1, 2 & 3) and CBR3 
are the results for the PCA based metric (eq. 4).  
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Table 1  - RMS errors for PG18 forecast

 CBR1 CBR2 CBR3 PLS 
Full  
(100 batches) 

6.58 6.58 8.94 6.05 

Subset 
(64 batches) 

6.33 6.12 8.66 6.34 

 
To assist in interpreting predictive ability, Fig. 3 
shows the PLS predictions against the actual time to 
achieve PG18 on a subset of data. The increase in 
prediction error with time is expected as forecasts 
further into the future are being made. 
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Fig. 3. PLS predictions of time to PG 18 

 
4.2 Case Study 2 Results 

In contrast to the first case study, the fed-batch nature 
of the antibiotic fermentation means that a number of 
manipulated variables can be modified throughout 
the batch. Furthermore, samples are routinely taken 
for analysis to track progress with multiple broth 
components analysed. This more comprehensive data 
set provides greater opportunity to predict behaviour 
but also, the higher data dimensionality means that 
forecast development is more complex. 

Recognising that the prediction of future behaviour 
must take into account batch trajectories, multi-way 
PCA approach was applied to data from the first 280 
hours of the 21 available fermentations to investigate 
whether batches can be identified where a drop in 
productivity occurs at the end of the batch. In such 
cases, it would have been prudent to keep feeding 
substrate for a longer period. MPCA was applied to 
the concentration and federate data to identify 
batches exhibiting a change from nominal behaviour. 
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Fig. 4. Bivariate scores plot of PC1 versus PC2 

Fig. 4 shows the principal component bivariate 
scores plot. The multi-way PCA approach provides 

an indication of whether patterns exist within the data 
thereby indicating dissimilarity between batches. In 
this case, PC 1 v PC2 plot identified that some 
batches deviated from nominal behaviour. In Fig. 4, 
two batches lie outside the 95% confidence interval 
and as such exhibit behaviour different to nominal 
operation. One of the batches is the most productive 
in the latter stages of all the batches analysed and the 
other is the lowest productivity batch. These results 
suggest that there may be patterns present in the data 
that explain deviations from nominal behaviour. Also 
of the 21 batches, at least one could lie outside the 
95% confidence interval by chance and still be 
characteristic of nominal operation. 

To investigate whether it is possible to forecast final 
product concentration from batch trajectories to 280 
hours, multi-way PLS was applied to the same 
variable set and using the same sampling frequency 
as for MPCA. Leave-one-out cross validation was 
implemented and Fig. 5 shows the validation results. 
It can be observed from Fig. 5 that the predictions of 
final product concentration fail to reasonably forecast 
the final value, falling well off the 45o parity line.  
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Fig. 5. MPLS forecast of end product concentration 

18 19 20 21 22 23 24 25
18

19

20

21

22

23

24

25

Predicted

A
ct

ua
l

 
Fig. 6. CBR using product and feed profile 

Table 2 – Comparison of CBR1 and MPLS 
performance using average RMS prediction errors

 CBR 
(product) 

CBR 
(product 
& feed) 

MPLS 

Full data set 0.90 0.93 1.15 
Outliers excluded 0.64 0.68 0.98 

Table 2 shows the RMS error of the predictions 
resulting from the application of CBR and MPLS 
corresponding to Figs 5 and 6. It is evident that the 
outlying data points dominate the prediction error in 
the CBR analysis and whilst they are also significant 
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in the MPLS results, the poorer performance of 
MPLS remains evident once they are removed.  

Two important observations arise from these results. 
When attempting to predict future batch behaviour, it 
is essential to check whether the behaviour of the 
current batch is consistent in form to past experience. 
If behaviour is different to that experienced 
previously, then predictions are likely to be 
inaccurate. PCA provides an effective tool to make 
such judgements. Secondly, the CBR approach 
provides a more accurate prediction of future batch 
performance in this example. In the case of MPLS, 
process behaviour is captured in a model and the 
model then used to make predictions. The loss of 
accuracy arises in the step from data to model as the 
error in model fit due to model structural inaccuracy 
is avoided in CBR. The process is sufficiently 
complex for this error to be significant. 

In implementing a CBR scheme, the first step is to 
create a database / library of ‘cases’ capturing 
progression of the batch through the course of the 
fermentation. This involves identifying those 
variables that are indicative of changes in behaviour 
and then building a library from which it is possible 
to compare the behaviour of the current batch. As 
more experience accumulates, the library of batches 
can be updated enhancing the capability of the CBR 
tool. The CBR method used here has been developed 
with a relatively small number of batches and hence 
the results can be improved on, when additional 
batches become available. 
 

5. CONCLUSIONS 

This paper has considered the application of 
forecasting methods for fermentation end point 
prediction. For the more straightforward forecasting 
problem of lager PG, PLS and CBR were 
comparable.  However, forecasts of acceptable 
accuracy could only be achieved when the batch 
temperature was under control. This is not surprising 
given that unpredictable changes in temperature have 
a considerable impact on fermentation performance. 
From a practical perspective the implication is that 
the temperature control system needs improvement if 
consistent prediction accuracy is to be achieved. 
Indeed, temperature control to achieve desired taste 
objectives is demonstrated in Kobayashi et al (2006) 
and a forecasting element to a control scheme offers 
many benefits. 

In the antibiotic manufacturing process, temperature 
and other variables are regulated more precisely but 
batch to batch variations still occur. The prediction of 
behaviour at the end of the batch is more complex 
and as a result the linear PLS model structure 
compromises accuracy. The non-model based CBR 
approach does not suffer from such limitations and 
therefore produces more accurate forecasts. It is 
nevertheless important to recognise that outlying 
batches can seriously degrade predictive performance 

so multivariate batch outlier removal is an important 
first step. 
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