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Abstract: Volatile compounds like higher alcohols and esters contribute to beer’s 
organoleptic profile. Most of these compounds are produced during alcoholic 
fermentation and operating conditions play an important role on their formation. In this 
study, a multicriteria optimization method, the Rough Set Method (RSM), is successfully 
used to determine the optimal region of fermentation conditions (temperature, pressure 
and initial yeast concentration) with respect to a specified beer aroma profile.  Copyright 
© 2007 IFAC 
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1. INTRODUCTION 

 
The complexity of multicriteria optimization 
problems in different fields of medicine, systems 
science, biotechnology and many more, has spurred 
the need to develop powerful methods that can be 
easily applied to solve different types of complex 
problems and provide the decision maker with the an 
acceptable compromised solution. 
 
The optimization of complex processes normally 
involves minimizing and/or maximizing numerous 
conflicting objectives; in cases like this, there is no 
unique solution that can provide the optimal values 
for all the objective criteria simultaneously. 
Therefore the decision maker must find a reasonable 
compromise. In a previous study, the optimization of 
brewing process with respect to the beer’s 
organoleptic profile has been formulated as a 
multicriteria optimization problem (Titica et al., 
2001; Trelea et al., 2004). The beer quality has been 
defined in term of flavour-active components 
content. Six aroma compounds have been selected 
with respect to their organoleptic threshold: two 
higher alcohols (isoamyl alcohol and phenyl 
ethanol), three esters (ethyl acetate, ethyl hexanoate 
and isoamyl acetate) and one vicinal diketone 

(diacetyl). These components are mainly produced 
during alcoholic fermentation and operating 
conditions play an important role on their formation. 
Thus, the optimization of the operating conditions 
like temperature, pressure and initial yeast 
concentration in the fermentation tank, has been 
proposed as a way to modify beer organoleptic 
profile and to guarantee its regularity. The best 
compromise of operating temperature, pressure and 
yeast inoculum’s size will ensure the best quality 
beer. The selection of the optimal operating 
conditions by the decision maker is a very complex 
task. To cope with these complex problems 
multicriteria optimization methods can be used, such 
as the Net Flow Method (NFM) and the Rough Set 
method (RSM) that can capture the knowledge that 
the decision maker has on the fermentation process in 
order to locate the optimal zone of operation.  
 
In this paper, the aroma production model is first 
presented. Then, the optimization protocol involving 
the RSM is presented. Finally, the RSM is used to 
determine the optimal concentrations of the six major 
aromatic compounds responsible for the organoleptic 
properties of beer and to specify the optimal 
fermentation operating conditions. Results are 
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compared with those obtained with the NFM and 
least squares methods.  
 
 

2. AROMA PRODUCTION MODEL 
 
In brewing, during the alcoholic fermentation where 
the yeast consumes sugars and amino acids of the 
wort, primary products such as ethanol, CO2, 
biomass and various secondary metabolites are 
produced. Some of the secondary products such as 
higher alcohols, esters, and vicinal diketones are 
flavour related and are responsible for the taste of the 
final product. In this study six of these products, as 
listed in the introduction, that are known to be more 
significant for beer flavour were selected based on 
their organoleptic threshold in beer (Titica et al., 
2001). A three-factor 2-level full factorial 
experimental design has been performed (Titica, 
2000). The three factors were the main three 
operating variables: temperature (T∈10-18oC), 
pressure (50-800 mbar gage), and yeast inoculum 
concentration (0.5-2.0 cell/mL). From this 
information, kinetic models to account for the 
evolution of the biomass, sugars, CO2 and the six 
selected aroma compound concentrations were 
derived. These models were used in this investigation 
to optimise the fermentation process. 
 
In terms of optimisation, the fermentation process 
can be schematically represented by Figure 1. Given 
a set of input variables, the concentration of the six 
selected beer flavour products can be predicted. It is 
desired to have all of these products as close as 
possible to their defined targets. The target values for 
each compound, as determined by a group of experts, 
are given in Table 1. It is therefore desired to 
minimize the difference between the predicted values 
and target values for the first five compounds and to 
ensure that the concentration of the last compound is 
less than 0.2 mg/L. These requirements represent the 
six individual competing objective functions and will 
be referred as C1 to C6. 
 
 

 

 
 
Fig. 1 3-input 6-output optimization model 
 

Table 1: Concentration target for each product 
 

Criteria Compound Target [mg/L] 
C1 Isoamyl alcohol 93.8 
C2 Phenyl alcohol 31.6 
C3 Ethyl acetate 23.9 
C4 Isoamyl acetate 2.04 
C5 Ethyl hexanoate 0.25 
C6 Diacetyl < 0.2 

 

 
3. OPTIMIZATION METHOD USED FOR BEER 

AROMA PRODUCTION 
 
In this investigation, a multicriteria optimisation 
method, known as Rough Set Method (RSM), is used 
to determine the optimal operating region of the beer 
fermentation process. A flow chart of the typical 
procedure for the multicriteria optimisation of a 
process is presented in Figure 2. After obtaining a 
proper model of the process, the optimisation method 
boils down to: (1) circumscribing the Pareto domain 
approximated by a sufficiently large number of non-
dominated solutions, and (2) ranking the entire 
Pareto domain by order of preferences. The Pareto 
domain (PD) represents the collection of solutions 
taken from the total solution set that are not 
dominated by any other solution within this set. In 
this respect, a point is said to be dominated by 
another point if the values of all optimization criteria 
(six in this investifgation) are worst than those of the 
second point (Thibault et al., 2002b). A genetic 
algorithm is often used to obtain the desired number 
of non-dominated points in order to adequately 
represent the entire Pareto domain (Halsall-Whitney 
and Thibault, 2006; Viennet et al., 1996). This first 
step is common to the majority of multicriteria 
optimisation techniques and is performed in absence 
of any biased preference of an expert or decision 
maker. It is only required to know if a given criterion 
should be minimized, maximized or as close as 
possible to a target value. 

Define objective criteria
to optimize the process

Design of experiments
Modelling

Obtain Pareto domain

Weighted
Least Squares

Net Flow
Method

Rough Set
Method

Other
Methods

Validate

Rank with

Implement optimisation
strategy  

Fig. 2 Flow chart of multicriteria optimisation  
 
The second step consists of ranking the entire Pareto 
in order of preferences based on the conscious, and 
sometimes unconscious, knowledge that an expert 
has on his/her process. There exist many multicriteria 
optimization methods such as Rough Set method 
(RSM), Net Flow method (NFM), Least Square 
method and many others. In this study, the method of 
interest is RSM. 
 
The Rough Set method is able to transform the 
preferences of a human expert, who ranks a small set 
of possible solutions extracted from different regions 
of the PD, to a simple set of rules for ranking the 
entire domain (Yanofsky et al., 2005). In the 
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traditional RSM, the set of selected points are 
presented to the expert all at once (batch). Thibault et 
al. (2002b) used the traditional RSM to classify the 
PD for the optimization of a thermomechanical 
pulping process. They presented the expert, who had 
a profound knowledge of the process, with seven 
points all at once, taken randomly from different 
regions of PD. This set was then ranked by the expert 
from the most preferred to the least preferred points. 
From this classified ranked set, rules were 
established and these rules were used to rank all the 
members of the PD. 
 
In RSM, rules are established based on the expert’s 
ranked set and the range of indifference for each 
criterion which is defined as the difference between 
two values of that criterion that is not considered 
significant enough to rank one value as preferred 
over the other; these are also established by the 
expert. To obtain a rule, each point is compared to 
every other point within that set in order to define 
“rules of preference” (P) and “rules of non 
preference” (NP). A rule is represented in the form of 
a binary set of values (i.e. 0 or 1), one for each 
criterion. A value of 1 indicates that the first point is 
better than the second point, while a value of 0 
indicates that the first point is worse than, or not 
significantly different than the second point with 
respect to a particular criterion (Thibault et al., 
2002b). 
 
Once all possible rules from the expert’s ranked set 
have been established, some rules need to be 
eliminated. This elimination is necessary for two 
reasons. First, if two preference or non preference 
rules are identical, only one copy of the rule is 
retained. Second, if a preference rule is identical to a 
non-preference rule, they are both eliminated since 
the expert cannot rank one point better than another 
point for the same reason that he considers a point 
worse than another point. 
 
One perceived problem with the RSM is the selection 
of the small random set of points that are presented 
to the expert. These points must be discriminative 
enough to allow the generation of a representative set 
of rules (Renaud et al., 2005). This cannot be 
guaranteed since the points are selected randomly 
and it is very much possible that there is not enough 
distance between some of the criteria of these points 
to allow the generation of different and efficient 
number of rules, i.e. a set that one could use to 
reliably order the entire Pareto domain. 
 
The method that is suggested and implemented in 
this paper for selection of points that were presented 
to the expert, to optimise the beer quality, seems to 
have effectively resolved the problem involved with 
the RSM. In this method, instead of presenting a 
subset of points from the PD to the expert all at once, 
the points were presented two at a time. Since two 
points can only be associated to two rules, one 
preference and one non preference, the rules are 
automatically generated after the points are ranked 
by the expert. Then, another pair of points is selected 

in a way to generate a different pair of rules, thus 
overcoming the duplication and elimination of rules. 
This process is continued until the desired number of 
rules or all possible rules are generated. If only a 
fraction of all possible rules is desired, the selection 
process would start with the most frequently 
encountered rule and progress towards the least 
frequent rules contained in the PD. It is important 
that all criteria of the selected pairs of points be 
sufficiently spaced to allow proper discrimination 
between the two points. In this investigation, the pair 
of points was selected in such a way that the value of 
one criterion for one point was as close as possible to 
one quarter of the total range of the criterion and the 
value of the other point was as close as possible to 
three quarter of the total range. The pair of points 
that best met this requirement for each set of two 
rules was selected. 
 
In this investigation, we did not have readily access 
to an expert. It was therefore decided to use the Net 
Flow Method as the expert such that the ranking 
obtained with NFM was used as the expert’s ranking. 
The NFM is a fairly robust multicriteria optimisation 
technique that uses the relative weighting of each 
criterion along with three thresholds for each 
criterion (indifference, preference and veto) to rank 
the entire PD. The reader is referred to Thibault et al. 
(2002a) for more details on the NFM. 

 
4. RESULTS 

 
The Pareto domain for the six-criterion beer 
fermentation process was approximated with 5000 
Pareto-optimal solutions. The existence of multiple 
Pareto-optimal solutions only occurs when the 
objectives are conflicting to each other. Otherwise a 
unique solution is obtained. The PD only contains 
non-dominated solutions, i.e. in a pairwise 
comparison there is at least one criterion for each 
point in the PD that is better than one of the criteria 
for all the other points. When several criteria are 
considered simultaneously there is no unique optimal 
solution but a set of mathematically equivalent 
Pareto-optimal solutions. According to Pareto, a 
solution is optimal if no criterion can be improved 
without impairing some other criterion. This reduced 
search space was then ranked using the RSM.  
 
The PD for the six criteria is graphically represented 
by projecting the six-dimensional criterion space 
onto three two-dimensional spaces as shown in 
Figures 3 to 5. On each plot, the black points 
correspond to the best 10%, the dark grey area 
represents the subsequent 40% and the light grey area 
shows the last 50% of the ranked PD. The intended 
target for each criterion is shown as a horizontal or 
vertical line on each plot. 
 
As clearly shown in Figures 3 to 5, the solutions 
circumscribed by the best 10% satisfy very well five 
out of the six criteria. The only criterion that has a 
ranking pattern that is contrary to the desired one is 
C1 where the optimal zone is the farthest from the 
desired target value. It is important to remember that 
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all these criteria are competing and it is not possible 
to satisfy all criteria simultaneously. The 
optimization procedure has undoubtedly 
compromised the quality of the C1 solution to obtain 
relatively good solutions for all the other criteria. 
The trade-off that must inevitably exist between 
some criteria is very well illustrated in Figure 4 
where the criterion C4 is plotted as a function of C3. 
An increase in C3 must also be accompanied by an 
increase in C4 to remain in the optimal region and 
vice-versa. This highlights the advantage of using a 
multicriteria optimisation technique that uses the 
entire PD because it provides valuable information 
on the interrelationship that exists between the 
various criteria, in contrast with traditional 
optimisation where a unique solution is obtained. 
 

  
Fig. 3 Rough Set Method C2 vs. C1 
 
Figure 5 shows clearly that the best 10% for criterion 
C5 is located the closest to the target value. However, 
no solutions within the domain of exploration were 
able to satisfy the target. The target was established 
by experts through tasting trials but, assuming that 
the model predictions are accurate, the target value 
for C5 cannot be obtained with the current range of 
experimental operating conditions. For criterion C6, 
it is necessary for the concentration of diacetyl to be 
lower than 0.2 which was achieved for all points in 
the Pareto domain. In the current investigation, this 
criterion was however minimized, i.e. a value of C5 
closest to 0. 
 
It is believed that the RSM has successfully 
identified the zone corresponding to the best 10% of 
all solutions in the PD. It is now important to 
examine the operating condition space that has given 
rise to the ranked PD. Figures 6 and 7 present the 
operating conditions corresponding to the PD using 
the same colour coding used in Figures 3 to 5. The 
operating conditions corresponding to the optimal 
region (best 10%) are in the following ranges: 
T∈[12-16oC], P∈[60-310 mbarg] and X0∈[0.5-0.75 
cell/mL]. To achieve the best 10% of all Pareto-
optimal solutions, low pressure and low initial 
inoculum, compared to the initial range of operation, 
should be used whereas the temperature spans over a 
larger range of operation. 
 

 
Fig. 4 Rough Set Method C4 vs. C3 

 
Fig. 5 Rough Set Method C6 vs. C5 
 
Table 2 shows the operating conditions and the 
solution that ranked first amongst all Pareto-optimal 
solutions using the RSM. The results, obtained with 
the NFM and the weighted Least Squares method 
(LSQ), are also presented for the purpose of 
comparison. Each criterion closer to the target is 
identified in bold characters. For the LSQ, the 
solutions in the PD were ranked according the 
following global objective function: 

         
δ

δ δ

δ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
2

6
n

LSQ
n = 1 n,max n,min

n n n,  target

1J  = 
6  -          (1)

with  = C  - C

 

In the LSQ, equal weights were used for all criteria. 
Comparing the criteria of the optimal points 
(presented in Table 2) obtained by the three methods, 
for the first five criteria the RSM optimum was 
closest to the desired target for three criteria, whereas 
the optimum obtained by the other two methods were 
closest to the target values only for one criteria. All 
methods obviously satisfied criterion C6 and 
identified a relatively low value. 
 
In this investigation, the Net Flow method played the 
role of the expert to rank each selected pair of points. 
The preference and non preference sets of rules were 
determined from the small ranked set. The two 
methods rank the entire Pareto domain using the 

138



     

information from an expert or decision maker. In the 
NFM, the information is in the form of a sensitivity 
of the differences of each criterion to the target 
values whereas for RSM, the information is 
indirectly obtained by forcing the expert to make a 
choice between solutions taken from the PD. It is 
therefore interesting to see how well the RSM was 
able to capture the information portrayed by the 
NFM. Figure 8 presents the parity plot of the Rough 
Set ranking as a function of the NFM ranking. It is 
clear that the best 10% is more or less the same as 
the best solutions are gathered in the lower left-hand 
corner of the plot. The correlation coefficient 
between the rankings of the two methods is 0.925 
even though it is much lower for the best 10%. For 
comparison, the correlation coefficient between the 
RSM and LSQ is 0.895. The LSQ becomes identical 
to NFM when the three thresholds are equal to zero. 
 
The RSM strongly relies on the ability of the method 
to select representative solutions that are presented to 
the expert to decide which of the two points is better. 
In previous investigations, a small set of points were 
presented in batch to the expert and then the rules 
were established (Thibault et al., 2002b) with the risk 
of obtaining duplicate rules, not accounting for some 
rules and finding rules in both the preference and non 
preference sets. The method proposed in this 
investigation, for selecting points presented to the 
decision maker, prevented the presence of duplicate 
rules as a pair of points was chosen in order that each 
time two new rules were generated. For a system 
with six criteria, there exists a maximum of 62 
distinct rules, i.e. 26-2. The minus two accounts for 
rules (000000) and (111111) that cannot be part of 
the PD because of the domination constraint. Each 
time a pair of points is chosen, two complementary 
binary rules are generated (Ex.: 110011 and 001100). 
 

Table 2: Optimal point for each method 
 

 LSQ NFM RSM 
T (oC) 15.3 14.87 13.37 

P (mbarg) 284 425 50 
X (107 cell/mL) 0.5 0.5 0.5 

C1 84.0 88.18 73.42 
C2 37.4 37.81 31.49 
C3 20.0 15.93 22.55 
C4 2.33 1.795 2.624 
C5 0.181 0.1523 0.2069 
C6 0.0357 0.0377 0.05816

 
In the current PD, all 62 rules were present such that 
it was necessary to select 31 pairs of points in the PD 
to generate all possible rules. Naturally, some rules 
were more frequent than others. The most frequent 
set of rules was {(011110);(100001)} with 21% 
occurrence, whereas the least frequent set was 
{(111101);(000010)} with 0.0032%. Some of the 
rules along with their frequency of occurrences (FO) 
are presented in Table 3. The rules in Table 3 are 
ordered from most to least frequent for both the 
preference and non preference sets. The 31 pairs of 
rules were used to rank all points of the PD as shown 
in previous Figures 3 to 5. 

 
Fig. 6 Rough set Method P vs. T 

 
Fig. 7 Rough Set Method X0 vs. T 

 
Fig. 8 Ranking comparison between NMF and RSM. 
 
To present 31 pairs of points to the decision maker to 
account for all possible rules is undoubtedly 
excessive as it represents a large human effort. In 
batch mode if 7 points are presented to the expert, a 
total of 21 point-to-point comparisons must be made 
simultaneously, which may be overwhelming for the 
expert. However. it is believed that selecting a 
reduced number of pairs of points representing the 
most frequent rules could be sufficient to provide an 
equivalent ranking of the PD. In the present 
optimisation problem, if five pairs of points are 
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chosen to represent the ten most frequent rules, 72% 
of all pairwise comparisons within the PD would be 
accounted for. This percentage increases to 89% if 
10 pairs of points are presented to the expert. The 
last 30 rules (last 15 complementary pairs) account 
for only 3% of the total number of occurrences. To 
test this hypothesis, the ranking of the PD was 
performed from a reduced number of rules and the 
results are presented in Figure 9. The ranking with a 
reduced number of rules is compared in terms of the 
regression coefficient (R2) with the NFM ranking 
and the ranking using all 31 sets of rules. It is 
obvious that in the present case, using approximately 
10 sets of rules leads to an equivalent results than for 
the 31 sets of rules, and a result, the experts has to 
examine a much lower number of points for an 
identical final result. 
 

 
Fig. 9 Performance of RSM using a reduced number 
of rules from most to least frequent rules. 

 
Table 3: P and NP rules with frequency of 

occurrences (FO). 
 

 C1 C2 C3 C4 C5 C6 FO (%) 

P 
Rules 

0 
0 
… 
1 
1 

1 
0 
… 
1 
1 

1 
1 
… 
1 
1 

1 
1 
… 
0 
1 

1 
1 
… 
1 
0 

0 
1 
… 
0 
1 

10.5 
9.21 
… 

0.0021 
0.0016 

NP 
Rules 

1 
1 
… 
0 
0 

0 
1 
… 
0 
0 

0 
0 
… 
0 
0 

0 
0 
… 
1 
0 

0 
0 
… 
0 
1 

1 
0 
… 
1 
0 

10.4 
9.21 
… 

0.0021 
0.0016 

 
Another important aspect of the present optimisation 
problem is the uncertainty whether or not the experts 
would be able to assess the quality of beer based on 
the values predicted by the model since they usually 
assess the quality of beer through actual testing. The 
expert needs to associate a given aroma 
concentration with an actual tasting of beer, which 
may represent a significant challenge. It is believed 
that if the model is good, using a robust multicriteria 
optimization method will lead to acceptable results. 
It is required to finally perform a validation 

experiment at the optimal operating conditions where 
the experts would actually test the final product. 
 
 

CONCLUSION 
 
This investigation has considered the use of the 
Rough Set method for selecting the operating 
conditions that would optimize the quality of beer. 
The RSM was able to clearly identify an operating 
zone for which the concentrations of the six most 
important metabolites, responsible for the 
organoleptic quality of beer, would be as close as 
possible to their estimated target values. 
 
The RSM can be very useful for multicriteria 
optimisation to capture in a very natural way the 
conscious and, sometimes unconscious, knowledge 
that the expert has on his/her process. This 
knowledge is not always efficiently captured by 
traditional optimisation methods. 
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