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Abstract: Regulation of the biomass specific growth rate is an important goal in
many fermentation fed-batch processes. Inspired in an invariant control law, we
propose in this paper a controller with the structure of a partial state feedback with
gain dependent on the output error. Further, to make the desired state trajectory
effectively invariant despite modeling errors and parameter variations, the feedback
gain is continuously adapted by means of a sliding mode algorithm. The stability
properties of the closed–loop process are investigated in detail. Copyright c©2007
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1. INTRODUCTION

Many biotechnological processes are characterized
by pure cultures with one limiting substrate and
with the metabolite of interest being formed in
parallel to the microbial growth. These growth-
linked reactions may be inhibited when a sub-
strate or a certain product is in excess (Bastin
and Dochain, 1990; Dunn et al., 2003). From a
biological and production standpoint, an impor-
tant goal is the regulation of the specific growth
rate in order to keep microorganisms into a given
physiological state (Jobé et al., 2003; Henson and
Seborg, 1992).

The papers (Johnson, 1987; Lee et al., 1999; Rani
and Rao, 1999) describe the history and state
of the art in the field of fermentation fed-batch
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process control. Many contributions deal with par-
ticular processes in which the substrate concen-
tration is measurable. In other cases, the pro-
cess is indirectly controlled by regulating some
auxiliary variable such as dissolved oxygen. An-
other research line is dedicated to develop more
generic controllers employing an estimation of the
controlled variable obtained from on-line mea-
surement of biomass concentration (Bastin and
Dochain, 1986; Claes and van Impe, 1999). In
this context, concepts of feedback linearization
have been applied with the aim of canceling the
process nonlinearities (Smets et al., 2002). More
recently, a globally stabilizing controller has been
proposed inspired in passivation concepts, thus
leading to more robust designs (De Battista et

al., 2006). This control law essentially differs from
the previous one in the sense that the output
error modulates the partial state feedback gain
rather than appearing as a biomass-independent
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feedback term. Also, adaptive control techniques
have been investigated with the aim of designing
controllers having minimal knowledge of process
parameters. In particular, a robust adaptive slid-
ing mode algorithm was recently developed (Picó-
Marco et al., 2005). Essentially, the adaptation
algorithm adjusts the partial state feedback gain
in order to steer the state trajectory to a goal
manifold. This control algorithm requires only on-
line measurements of volume and biomass con-
centration 2 , and an upper-bound for the specific
growth rate. In the current paper, we further
exploit the adaptive approach presented in (Picó-
Marco et al., 2005). More precisely, we introduce
an estimation of the output error in the adaptive
feedback law. This innovation allows improving
the transient response. The proposed controller
exhibits very interesting features. Most impor-
tantly, it is robust to process parameter uncertain-
ties and bounded disturbances in environmental
variables.

The paper is organized as follows. In section 2 the
problem is formulated and the control strategy is
posed in terms of a goal manifold. The proposed
control law and its analysis is considered in section
3. Some examples highlighting the performance
of the devised controllers are shown in section 4.
Finally, section 5 outlines the conclusions of the
work.

2. INVARIANT CONTROL APPROACH AND
PROBLEM STATEMENT

A large portion of growth-linked fed-batch fer-
mentation processes have the following descrip-
tion in state-space (Bastin and Dochain, 1990;
Dunn et al., 2003):

Σ :



















ẋ = µ(s)x−
F

v
x

ṡ = −ysµ(s)x−mx+
F

v
(si − s)

v̇ = F

(1)

where x ∈ X ⊂ R
+ and s ∈ S = (0, si) are

the biomass and substrate concentrations respec-
tively; si > 0 is the influent substrate concen-
tration; v ∈ R

+ is the volume; F ∈ R
+ is the

feeding flow; ys > 0 is a yield coefficient; m > 0
is the maintenance constant. Finally, µ is the
specific growth rate which is an either monotonic
or non-monotonic function of substrate concentra-
tion taking values in the set µ ∈ (0, µm). Typical
examples are:

2 A biomass sensor (Navarro et al., 2001) that works

accurately and reliably for a wide range of concentrations

has been designed and patented by our research group.

- Monod:

µ(s) =
µms

ks + s
(2)

- Haldane:

µ(s) =
µm(1 + 2

√

ks

ki
)s

ks + s+ s2

ki

. (3)

The control objective is the regulation of this
specific growth rate at a given value µ = µr < µm

using F as control input.

Note that the control specification does not imply
stabilization around an operating point. On the
contrary, the state follows an unbounded trajec-
tory. In fact, only substrate concentration stabi-
lizes around a value sr satisfying µ(sr) = µr,
whereas biomass concentration follows a bounded
trajectory and volume goes to infinity.

Let us define a reference model for Σ (Picó-Marco
et al., 2005):

Σr :











ẋ = µrx− λx2, x(t0) = xr,0

v̇ = λxv, v(t0) = vr,0

s = sr.

(4)

This exosystem generates the following goal man-
ifold for Σ:

Zr,0 :







z1 = 1 −
Xr,0

X
−

µr

λX
(v − vr,0) = 0

z2 = 1 −
s

sr

= 0
(5)

where X(t) = x(t)v(t) is the total biomass popu-
lation in the bioreactor and Xr,0 = xr,0vr,0 is its
initial value for the reference model.

It is clear that the control objective is satisfied
on this manifold. That is, the biomass population
grows exponentially with constant specific growth
rate: X(t) = Xr,0e

µr(t−t0). It is shown in (Picó-
Marco et al., 2005; Picó-Marco et al., 2006) that
the partial state feedback law

F (x, v) = λxv

λ = λr =
ysµr +m

si − sr

(6)

is an invariant control for Σ with respect to the
reference manifold Zr,0 generated by Σr. In other
words, once the system Σ is on Zr,0, it remains
there.

Observation: Feedback laws similar to (6) have
been widely investigated (see for instance (Lee et

al., 1999) and (Moya et al., 2002)). However, this
derivation based on invariance concepts is the key
to the design of the adaptive control algorithm
developed in the next section.

Our control objective is the design of a control law
of the form F = λ(t)xv that makes the reference
manifold Zr,0 an immersion for Σ. The control
design is subject to the following constraints:
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- The only on-line measurable variables are
volume and biomass concentration.

- The yield coefficient ys, the maintenance
constant m, and the influent substrate con-
centration si are uncertain parameters that,
moreover, may vary during the process.

- The specific growth rate function µ(s) is
imprecisely known.

- The control signal is nonnegative (F ≥ 0).

We also make the following assumption:

- An estimation µ̂ of µ(s), obtained from the
on-line measurement of x and v, is available
for feedback.

3. PROPOSED CONTROL ALGORITHM

Let us consider the process Σ with partial state
feedback F = λf (t)xv:

Σf :











ẋ = µ(s)x− λfx
2

ṡ = −ysµ(s)x−mx+ λfx(si − s)

v̇ = λfxv.

(7)

The problem now is the following. For a given
initial condition defined for the reference model
Σr, define an adaptive law for λf so that Σf

is immersed into Σr with minimal knowledge of
the process parameters and possibly including an
estimation of the specific growth rate error.

We propose:

λf (µ̂) = λ (1 − f(µ̂))

λ̇ =
−λ2X

µr (v − vr,0)

(

1

Tz

− µr

)

z1, λ(t0) = λ̂r

(8)
where we have included an increasing S-like func-
tion f(·) in the feedback gain λf to improve the
convergence towards the goal manifold. This func-
tion satisfies the following conditions:

• f is lower and upper-bounded by −f̄ ≤ f ≤
1,

• f(µr) = 0

• f globally satisfies the Lipschitz condition
with gain k/µr.

The first condition is necessary for the feeding flow
to be nonnegative and bounded. The second con-
dition guarantees that the control is effectively in-
variant on the goal manifold. The third condition
is imposed to prove convergence towards the goal
manifold. Finally, from the two last conditions, it
follows that |f(µ)| ≤ k

µr
|µ− µr|.

With regards to the adaptation of λ, note that
only the first off-the-manifold coordinate (z1) is
used since the second coordinate (z2) is not avail-

able on-line. The initial value λ̂r is obtained from

(6) using estimated values of the parameters. For
technical reasons, the starting point of the goal
trajectory must satisfy the condition vr,0 < v(t0).
Finally, the time constant Tz is given by

1

Tz

=
N0

max{|z1|, δ}
+N1,

N0 = n0(1 + k)∆, n0 > 1

N1 = n1∆, n1 > 1

∆ = max {µr, µm − µr}

(9)

with 0 < δ � 1.

3.1 Convergence of the adaptation law

We prove here global convergence towards the
sliding manifold z1 = 0. We leave for the next
subsection the proof of convergence on z1 = 0 to-
wards the goal manifold, which is the intersection
of z1 = 0 with z2 = 0.

¿From (5) and (8), the time evolution of the
sliding coordinate, i.e. the reaching dynamics, is

ż1 =

[

µr − µ−
1

Tz

]

z1 + (µ− µr + µrf(µ̂)) .

(10)
Now consider the Lyapunov-like function

W =
1

2
z1

2. (11)

Then:

Ẇ = (µ− µr (1 − f(µ̂))) z1−

−

(

N0

max{|z1|, δ}
+N1 + µ− µr

)

z1
2

< ∆(1 + k)|z1| −
N0

max{|z1|, δ}
z1

2

< 0 for |z1| >
δ

n0
.

(12)

That is, the state can be driven arbitrarily close to
the sliding manifold. In the limit, choosing δ → 0,
an ideal sliding motion establishes on z1 ≡ 0
(Utkin, 1977).

3.2 Stability analysis

This subsection is devoted to demonstrate that, at
least locally, the system trajectories on the sliding
surface z1 ≡ 0 converge to its intersection with
z2 ≡ 0, i.e. to the goal manifold Zr,0.

On the sliding manifold z1 ≡ 0, the closed-loop
system dynamics (7) is reduced to:

Σz1
:



















ṡ = [−ysµ(s) −m+ λf (µ̂)(si − s)]x

λ̇ =

[

−λ2µ(s) − µr

µr

v

v − vr,0

]

x

v̇ = [λf (µ̂)v]x
(13)

where the equation for λ has been obtained from
the sliding mode invariance condition (z1 = 0,
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ż1 = 0) (Utkin, 1977; Sira-Ramı́rez, 1988), and
the equation for biomass concentration has been
omitted to avoid redundancy. In fact, on z1 ≡ 0,
x is algebraically dependent on the other state
variables: x =

Xr,0

v
+µr

λv
(v−vr,0). See that x follows

a bounded trajectory on R
+. Besides, replacing x

in the last equation of (13) yields v̇ = µr(1 −
f(µ̂))(v − vr,0) + λf (µ̂)Xr,0, which confirms that
the volume diverges exponentially on z1 ≡ 0
(Recall that v0 > vr,0). By this reason, we have to
use concepts of partial stability in order to show
convergence towards the goal manifold.

Definition: Let Ψ : V
4
= [v0,∞) 7→ (1, ψ0] be the

function ψ(v) = v
v−vr,0

.

Definition: Let us call ζ the partial state ζ =
col(s, λ) and ζr = col(sr, λr). Let M = S × <+.

Consider now the continuously differentiable func-
tion

V (ζ, ψ) = ψ

∫ s

sr

µ(ς) − µr

µr

dς +

+(si − sr)

(

ln
λ

λr

+
(λr − λ)

λ

)

(14)

with time derivative

V̇ (ζ, ψ, µ̂) =−ψx(λ, ψ) ·

[

ys

µr

(µ(s) − µr)
2+

+
λ

µr

(µ(s) − µr)(s− sr) +

(ψ − 1)λf (µ̂)

∫ s

sr

µ(ς) − µr

µr

dς +

+
λ(si − s)

µr

(µ(s) − µr)f(µ̂)

]

. (15)

Let us assume for the moment that we have

a perfect estimation of µ, that is µ̃
4
= µ̂ −

µ = 0. This assumption allows us to study the
inherent stability properties of the feedback law.
In a following paragraph we analyze the effect of
the estimation error on the convergence of the
control algorithm. Thus, replacing µ̂ in (15) with
µ renders

V̇ (ζ, ψ) =−ψx(λ, ψ) ·

[

ys

µr

(µ(s) − µr)
2+

+
λ

µr

(µ(s) − µr)(s− sr) +

+(ψ − 1)λf (µ(s))

∫ s

sr

µ(ς) − µr

µr

dς +

+
λ(si − s)

µr

(µ(s) − µr)f(µ(s))

]

. (16)

At least locally around ζr, V (ζ, ψ) is upper and
lower bounded by the positive definite functions

V (ζ)
4
= V (ζ, ψ0) and V (ζ)

4
= V (ζ, 1):

V (ζ) ≤ V (ζ, ψ) ≤ V (ζ). (17)

Additionally,

V̇ (ζ, ψ) ≤ −Q(ζ) (18)

where Q(ζ)
4
= −V̇ (ζ, 1) is nonnegative definite.

Then, Σz1
is Lyapunov stable with respect to ζ

uniformly in v, and there exists D ⊆ M (D 3 ζr)

such that for all (ζ, v) ∈ D × V, ζ(t) → E(D)
4
=

{ζ ∈ D : Q(ζ) = 0} as t → ∞ (Chellaboina
and Haddad, 2002). Although it is not generally
true for partially stable systems, an invariance
principle can be derived for asymptotically au-
tonomous partial systems (Chellaboina and Had-
dad, 2002),(Rouche et al., 1977)(Ch. 8). Fortu-
nately, this is our case. In fact, ψ → 1 and x →
µr/λ as v diverges. So, the partial system defined
by the first two equations of (13) asymptotically
converges to the autonomous system

Σ∞

z1
:







ṡ = (−ysµ(s) −m+ λf (µ(s))(si − s))
µr

λ
λ̇ = −λ(µ(s) − µr)

(19)
It is easy to see that ζr is the largest invariant set
for (19) in E(D). Consequently, Σz1

is asymptoti-
cally stable with respect to ζ uniformly in v.

Remark: The inclusion of the increasing function
f in the feedback gain λf improves convergence to
the goal manifold. This is observed in (16) where
the last term in brackets is always positive.

Monotonic kinetic functions. For monotonic ki-
netic functions, e.g. Monod,

* V (ζ, ψ) verifies (17) for all ζ ∈ M and V (ζ)
is radially unbounded.

* V̇ (ζ, ψ) verifies (18) for all ζ ∈ M and ζr is
the largest invariant set for (19) in E(M).

Consequently, Σz1
is globally asymptotically sta-

ble with respect to ζr uniformly in v (Chellaboina
and Haddad, 2002). Then, the system Σf on
z1 ≡ 0 globally asymptotically converges to the
goal manifold Zr,0 defined by the reference model
Σr.

Non-monotonic kinetic functions. For processes
with Haldane-like kinetic functions the previous
results about stability are only local. In fact, it
is well known that such processes may exhibit
multiplicity. Let us denote sm the substrate con-
centration at which the growth rate is maximum,
sl < sm and sh > sm the substrate concentrations
satisfying µ(sl) = µ(sh) = µr. Locally around
sr = sl, the kinetic function is increasing. Then,
Σz1

locally asymptotically stabilizes (partially)
around ζr uniformly in v. Furthermore, if the ki-
netic function µ(s) were known, an estimate of the
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domain of attraction could be derived from (16).
In particular, the second term becomes negative
for s > sh. Therefore, a way of avoiding unstable
responses consists in upper-bounding the value
of λ in such a way that substrate concentration
cannot exceed sh. This method was proposed in
(Picó-Marco et al., 2005) and can directly be ap-
plied to the current problem.

Effects of estimation errors. Biomass-based ob-
servers proposed so far, under the assumption
that the model parameters are unknown, do not
exhibit uniform exponential convergence. So, the
separation principle cannot be applied to show
stability of the whole control system. Stability
analysis of the controller plus observer is beyond
our scope since it would be a particular result valid
for a given observer. In general, biomass-based
observers achieve a finite-time bounded error pro-
vided the rate of change of the specific growth rate
is also bounded. So, let us suppose that, after a
finite time, the estimation error satisfies µ̃ < ρ.
Then,

(µ− µr)f(µ̂) = (µ̂− µr)f(µ̂) − µ̃f(µ̂)

≥ |f(µ̂)|(|µ̂− µr| − ρ).
(20)

Therefore, it can be seen that the last term in
brackets in (15) is always positive for |µ̂−µr| > ρ
and thereby for |µ− µr| > 2ρ. Consequently, as a
first approach, we can say that after a finite time,
the output error enters the vicinity |µ− µr| ≤ 2ρ.
It should be observed that, though a general re-
sult, this is a conservative bound since the contri-
bution of the remaining terms in (15) to the sign
of V̇ , which are all nonnegative, has been ignored.
If the function µ(s) were known an the observer
dynamics were included in the model, then a less
conservative bound could be obtained. Moreover,
asymptotic stability conditions for the complete
control system (i.e. including the observer) could
potentially be derived.

4. SIMULATION RESULTS

Simulation results are presented in this section to
show the main features of the proposed control
law. The parameters of the adaptive control algo-
rithm are δ = 10−3 and n0 = n1 = 1.5, whereas
the function f has been selected as

f =







−1 if fL ≤ −1
1 if fL ≥ 1
fL otherwise

, fL =
k

µr

(µ̂− µr) . (21)

The estimation µ̂ was obtained using the Bastin
& Dochain observer with a time constant of 10
minutes.

In the first example (Fig. 1) we considered a
process with Monod kinetics. We assumed a 50%
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0 10 20 30 40 50 60
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0.016

0 10 20 30 40 50 60
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µ
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λr

λ̂r

λ̂r

λ
f
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Fig. 1. Example 1: Response of different control
laws in the presence of model uncertainty.
F = λrxv (dashed), F = λr(1−f(µ̂))xv (dot-
dashed), F = λ(1− f(µ̂))xv with adaptation
of λ (solid).

error in the parameter ys that led to a 34% error
in the estimation λ̂r of λr. In dashed line, it is
shown the response of the conventional control
law F = λ̂rxv, which exhibits large steady state
error. In dot-dashed line it is shown the effect
of output error feedback. This simulation run
corresponds to a control law F = λ̂r(1 − f(µ̂))xv
with k = 3. A steady state error still appears
though it is lower than in the previous case. It
can be corroborated that the error decreases as
gain k increases. However, k is limited by the
noise of the estimation and the speed of response
of the observer. Finally, the solid lines depict
the response of the proposed control law with
adaptation of λr and error feedback. See in the
middle part of the figure how the parameter λ
is adapted during the process. This adaptation
allows eliminating the steady state error.

The second example (Fig. 2) provides simulation
results for a process with Haldane kinetics. This
example is aimed at showing the evolution from
a large initial substrate concentration towards
the desired one. In particular, the response of
the adaptive control law is evaluated for different
values of the gain k. Besides, we selected an
initial condition far from the surface in order to
corroborate the convergence of the algorithm. It
is observed in the figure that the convergence
towards the sliding surface and then towards the
set-point speed up as gain k increases.

5. CONCLUSIONS

In this work we proposed a control law for fed-
batch processes which consists of two factors.
The first one is continuously adapted using slid-
ing mode techniques in order to guarantee zero
steady state error in the regulation of the specific
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Fig. 2. Example 2: Response of the adaptive
control law with different feedback gains from
large initial substrate concentration. k = 0
(dashed), k = 1 (dot-dashed), k = 3 (solid).

growth rate. The second one is aimed at speeding
up the transient response. The proposed control
law only requires on-line measurement of biomass
concentration and volume, and exhibits excellent
robustness properties against model uncertainties.
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(2005). Sliding mode scheme for adaptive spe-
cific growth rate control in biotechnological
fed-batch processes. International Journal of

Control 78(2), 128–141.
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