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Abstract: The emergence of surface plasmon resonance-based biosensors has fa-
cilitated the identification of kinetic parameters for macromolecular interactions.
Normally, these parameters are computed from experiments with arbitrarily cho-
sen periods of protein and buffer injections, and varying protein concentrations.
Instead of choosing the above mentioned variables arbitrarily, in this paper, an
optimization approach is used to determine them so as to reduce the experi-
mentation time, while treating the required confidence level as constraints. It
is shown using experimental data that the desired confidence is reached with a
much shorter experiment, compared to the standard set of experiments typically
performed.Copyright c©2007 IFAC

Keywords: Optimization, Identification, Confidence level, Macromolecular
interactions, Biophysical characterization, Kinetics, Surface plasmon resonance.

1. INTRODUCTION

Identification of kinetic parameters for macro-
molecular interactions is a key issue in biochem-
istry, protein engineering and rational drug de-
sign. The confidence in these kinetic parameters
is key during early and late stages of in vitro drug
development (Stenlund et al., 2006) as well as in
the growing field of quality assessment of recom-
binant proteins used as therapeutics (Kikuchi et

al., 2005).

The above mentioned identification requires ap-
propriate measurements, for which surface plas-
mon resonance (SPR) biosensors have emerged as
a new approach during the last decade (Myszka,
1997). This approach for characterizing macro-
molecular interactions gives not only an opportu-
nity to quantify the interactions at equilibrium,
but also to measure their kinetics. Among the
SPR biosensors available in the market, the Bia-

core instruments (BIACORE Inc.) are widely rec-
ognized to provide the state-of-the-art technology
for kinetic characterization (Myszka, 2004).

The rapid expansion of the SPR technology has
been accompanied by the development of nu-
merical approaches to analyze the recorded data
sets (Myszka, 1997; De Crescenzo et al., 2001).
Though it is relatively easy to collect Biacore
data, the precise determination of kinetic con-
stants still depends on experimenter’s know-how
and is based on trial-and-error approaches. More
importantly, to assign confidence levels to these
parameters is a tricky issue, since the varia-
tion in the estimated parameters arises from two
sources: the measurement noise and the process
noise (variation in biological behavior). In this
paper, only the error in the parameters caused by
the measurement error is addressed and the goal
herein is to design the experiments so as to have
a desired confidence in the parameters.
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It is shown in this paper that optimization at the
level of experimental planning can indeed help in
having shorter experiments that give the desired
confidence in the estimated parameters. Also, the
total consumption of the material can be reduced.
The optimization problem defined here is to find
the shortest experiment that leads to the given
confidence levels on the estimated parameters.

The literature on optimization of experiments
is vast and has used certain optimality criteria
derived from the Hessian of the identification
problem (Pukelsheim, 1993), also referred to as
the Fisher information matrix (Walter and Pron-
zato, 1985). Typically, constraints are not taken
into account in the problem formulation. The
novelty of this paper is the use of an experimen-
tally relevant criterion such as the total time as
the objective function, while taking into account
the confidence level of the identified parameters
as constraints. The confidence levels are indeed
calculated using the Hessian resulting from the
identification step.

The paper is organized as follows. Section 2
presents the problem definition and includes all
the identification tools used in this project. Sec-
tion 3 defines the optimization problem for ex-
periment planning while Section 4 shows the im-
provement obtained using the optimization by
comparing the optimized experiments with the
non-optimized ones. Finally the conclusions are
presented in Section 5.

2. IDENTIFICATION OF KINETIC
PARAMETERS

2.1 Surface plasmon resonance experiment

In a typical Biacore experiment, one of the species
under study is immobilized on the sensor chip
surface. A solution containing the other binding
partner is then injected at a defined concentra-
tion in a continuous fashion over the sensor chip
surface and the mass accumulation resulting from
the interaction is recorded in real-time in arbitrary
Resonance Units (RU). The signal recorded in RU
is proportional to the change in mass that occurs
at the sensor chip surface (Fig 1 for example).
After a pre-defined period of time, the protein
solution is replaced by a continuous injection of a
buffer and the complexes formed at the biosensor
surface starts dissociating. The RU measurements
are obtained in real-time both during the associ-
ation and dissociation periods. Since the signal is
recorded in real time, kinetic information can be
obtained.

If necessary, the complexes remaining at the
biosensor surface are totally dissociated by inject-
ing a regeneration solution. Once the surface is

regenerated, the injection cycle is repeated over
the same surface. The protein concentration of
the solution to be injected is varied. This leads
to the recording of a set of curves, depicting the
interactions between the protein and its binding
partner that is attached to the sensor chip surface.

2.2 Modeling of the interaction

The system under study corresponds to contin-
uous injections of protein (the analyte, denoted
A) at defined concentrations, over a surface on
which its binding partner (the ligand, denoted B)
had been previously coupled. This results in the
formation of a non-covalent complex AB that can,
in turn, dissociate. The interaction is depicted by
the following scheme:

A + B

ka

⇀↽
kd

AB (1)

where ka and kd are the rate constants of the
interaction in M−1s−1 and s−1 respectively. The
above interactions are monitored by using the
resonance signal of the resulting product AB.
The following model is used to characterize this
interaction :

ṘAB = kaCA(Rmax − RAB) − kdRAB ,

RAB(0) = 0 (2)

R =

{

RAB + RA if CA 6= 0
RAB if CA = 0

(3)

where CA is the concentration of the free analyte
A in M , Rmax the total ligand concentration
in RU, RAB the concentration of AB complex
in RU, RA the resonance signal resulting from
the refraction of analyte A in RU and R is the
resulting recorded signal in RU. Note that a
simple Langmuirian kinetics is assumed with the
rate of the forward interaction being kaCACB ,
with CB ∝ Rmax − RAB .

2.3 Parameter identification problem

In order to identify the parameters ka and kd, a
series of experiments with varying concentrations
of analyte A, CA are performed. Each experiment
consists of an on-period (protein injection) ton

and an off-period (buffer injection) toff , both
expressed in seconds. From the obtained data, the
following least-squared identification algorithm is
utilized to compute the required parameters.
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min
ka,kd,Rmax,RAi

S (4)

S =

N
∑

i=1

1

T i

∫ T i

0

(Ri
meas(t) − R̂i(t))2dt

s.t. R̂i obtained from (2), (3)

where N is the number of experiments, T i = tion+
tioff , the duration of the ith experiment, Ri

meas(t)

the measurements, and R̂i the prediction from
the model. Note that the parameters Rmax and
RAi

the resonance signal of analyte A in the
ith experiment should also be included in the
identification procedure.

2.4 Confidence intervals

One of the important aspects while performing
identification is the confidence one has in the
parameters. This primarily depends on the mea-
surement noise, but also on the experimental plan-
ning. To analyze this, consider the general case,
where the model parameters θ are obtained by
minimizing a least-squared criterion

min
θ

S(θ) =
1

T

∫ T

0

1

2
‖ymeas − ŷ(θ)‖2dt (5)

where ymeas are the measurements and ŷ the
model prediction. The best estimate θ̂ of the
parameters θ found by minimizing S(θ) respects
the necessary condition of optimality:

∂S

∂θ
= 0 ⇒

1

T

∫ T

0

(ymeas − ŷ(θ))T

(

∂ŷ

∂θ

)

∣

∣

∣

θ̂
= 0 (6)

Let y∗ be the real data without noise, ǫ be
the noise signal and θ∗ the real values of the
parameters. Then, we have :

ymeas = y∗ + ǫ (7)

1

T

∫ T

0

(y∗ − ŷ(θ∗))T

(

∂ŷ

∂θ

)

∣

∣

∣

θ∗
dt = 0 (8)

Considering the Taylor series approximation of (6)
and using (7) leads to:

1

T

∫ T

0

(y∗ − ŷ(θ∗)T

(

∂ŷ

∂θ

)

∣

∣

∣

θ∗
dt

−
1

T

∫ T

0

((

∂ŷ

∂θ

)

∣

∣

∣

θ∗
θ̃T − ǫ

)T (
∂ŷ

∂θ

)

∣

∣

∣

θ∗
dt = 0

(9)

where the variation of θ̂ around θ∗ is expressed by
θ̃ = θ̂ − θ∗. Using (8) in (9) gives :

θ̃ = H−1

(

1

T

∫ T

0

(

∂ŷ

∂θ

)T

ǫ dt

)

(10)

H =

(

1

T

∫ T

0

(

∂ŷ

∂θ

)T
∂ŷ

∂θ
dt

)

(11)

where H is an approximation of the Hessian of
the minimization problem (5) and is also referred
to as the Fisher information matrix in literature
(Walter and Pronzato, 1985).

The variance of θ̃ can be expressed by :

E(θ̃ θ̃T ) = H−1φT E(ǫǫT )φH−1 (12)

φ =

(

1

T

∫ T

0

∂ŷ

∂θ
dt

)

(13)

If the variance of the noise measurement is the di-
agonal matrix, E(ǫǫT ) = σ2I, then (12) becomes:

E(θ̃ θ̃T ) = H−1σ2 (14)

where σ2 can be estimated by the optimal value
of S in 5. If the number of measurements is large
enough, the dispersion of θ̂ around the true values
θ∗ follow a normal distribution such as :

(θ̂ − θ∗) ≈ Np(0, σ2H−1) (15)

So, the dispersion around θ∗ is normally dis-
tributed, and the 100(1 − α) confidence interval
for θ∗ can be approximated by :

θ∗ : (θ∗ − θ̂)H(θ∗ − θ̂) ≤ 2pσ2Fα
p,n−p = c2 (16)

where p is the number of parameters in the model,
n the number of samples, and F the cumulative
distribution function (Seber and Wild, 1989). The
confidence intervals of θi can be evaluated as :

ξi =
|θ̂i − θ∗i |

θ̂i

=
c
√

(H−1)ii

θ̂i

(17)

2.5 Calculation of the Hessian

Thus, for calculating the confidence intervals, it
can be seen that obtaining the Hessian is crucial.
The calculation of the Hessian for the optimiza-
tion problem (5) where the dynamic system (2)
acts as a constraint will be studied next.

Applying (11) to the system (2) leads to the
following expression of the Hessian:

H =
1

T

∫ T

0

(

∂R

∂θ

)T
∂R

∂θ
dt (18)

where :

θ ≡









ka

kd

Rmax

RA









107



For the system (2)(3), let xi be used to denote the
elements of the vector ∂R

∂θ
:

∂R

∂ka

=
∂RAB

∂ka

≡ x1 (19)

∂R

∂kd

=
∂RAB

∂kd

≡ x2 (20)

∂R

∂Rmax

=
∂RAB

∂Rmax

≡ x3 (21)

∂R

∂RA

=

{

1 if CA 6= 0
0 if CA = 0

(22)

Taking the derivative of (2) with respect to the
three first parameters gives the following system
of differential equations:

ẋ1 = CA(Rmax − RAB) − (kaCA + kd)x1 (23)

ẋ2 =−RAB − (kaCA + kd)x2 (24)

ẋ3 = kaCA − (kaCA + kd)x3 (25)

Thus, the Hessian is obtained by solving (23)-
(25)along with (2)-(3).

3. OPTIMIZATION OF EXPERIMENTS

The main objective of the paper is to find the
shortest experiment that will provide a desired
confidence level in the estimated values of the
interaction rate constants ka and kd.

Optimum design of experiments have been stud-
ied in the past using various techniques. Many
optimality criteria have been used to define the
optimization problem in the literature: the A-
optimality (Montgomery, 2005), the E-optimality
(Lorenzen and Anderson, 1993) and the D-
optimality (Pronzato and Walter, 1989). Let the
p eigenvalues of the inverse of the Hessian be de-
noted by λi. The A-optimality criterion minimizes
the average variance, i.e. it maximizes the trace
of the inverse of the Hessian ,i.e. max (

∑p

i=1
λi).

The E-optimality criterion minimizes the maxi-
mum variance of the parameters, i.e. maximizes
the minimum eigenvalue of the inverse of the Hes-
sian, i.e. max (minλi). The D-optimality criterion
minimizes the volume of the space in which the
estimated parameters could lie. This corresponds
to maximizing the determinant of the inverse of
the Hessian, i.e. max (

∏p

i=1
λi).

In this paper, the novelty lies in the formulation of
optimization problem, which is motivated by the
user requirements rather than a variance criterion
as discussed before. The problem is to minimize
the experimentation time subject to the desired
confidence levels acting as constraints. In addition
physical limitations are also taken into consid-
eration. The optimization problem is defined as
follows :

min
ton,toff ,CA

(ton + toff ) (26)

s.t. ξka
≤ βa

ξkd
≤ βd

CAton ≤ ηmax

CA ≤Cmax

ton + toff ≤ Tmax

where ton and toff are the association and the dis-
sociation periods of the experiment respectively,
CA the concentration of analyte to inject, βa and
βd are the desired level of confidence in estimated
parameters ka and kd, respectively, ηmax the max-
imum amount of analyte allowed to be used and
Tmax the maximum total time allowed for the
experiment. The confidence levels ξka

and ξkd
are

computed using (17).

As with any experimental design, the value of ka,
kd needs to be known to choose the optimum
experiment. This however is not possible (if we
had known the true values, there is no reason to
perform an experiment !) and so, the optimum
design is based on a previous non-optimized ex-
periment.

4. EXPERIMENTAL RESULTS

4.1 Materials and methods

All the experiments presented in this paper have
been performed using the Biacore 3000 biosensor
instrument with sensor chips (CM5). All chemi-
cals were purchased from Biacore Inc. and Fisher
Scientific Ltd (ON). All SPR experiments were
carried out at 25oC with PBS (Phosphare Buffer
Saline) as the running buffer. In order to demon-
strate the adequacy of the proposed approach,
the interaction between a protein and a specific
monoclonal antibody that had been developed for
diagnostic and therapeutic use (the analyte), were
investigated. More specifically, recombinantly-
expressed and purified Prostate-Specific Mem-
brane Antigen (PSMA, 50 000 Da) has been im-
mobilized on the sensor chip (120 RUs) accord-
ing to standard amine protocols described in (De
Crescenzo et al. 2001). Purified anti-PSMA mouse
monoclonal IgG antibody (clone ♯17G1, from Dr.
S. Moffett, Proscan RX Pharma Inc., Montreal,
QC, Canada) was used as the analyte (the species
which is injected over sensorchip surface).

All the kinetic experiments were carried out in
duplicate at a flow rate of 50 µ L/min to pre-
vent non-biological artifacts. Injections of anti-
body were performed using the values of concen-
tration, ton and toff specified later. In between the
injections, regeneration of the sensor chip surface
(i.e., elution of antibody bound to antigen) was
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accomplished by 2 pulses of Glycine (10 mM, 20
s, pH 3.0). Similar injections were performed over
a mock surface to correct antigen-antibody data
(De Crescenzo et al., 2001) prior to analysis.

4.2 Non-optimized reference experiments

As a point of comparison, experiments were done
using 5 different levels of analyte concentration:
18.75 nM, 37.5 nM, 75 nM, 150 nM and 300 nM.
Analytes were injected for 4 minutes (ton = 240 s)
and the dissociation period allowed was 6 minutes
(toff = 360 s). In addition, an experiment where
only the buffer is passed was also performed,
using which the baseline is eliminated. Also, each
experiment was done in duplicate and an average
of each pair of experiments was utilized. Fig 1
shows the resonance signal of these experiments.

The next challenge is to calculate the variance
of the measurement error, σ2. Note that the er-
ror between the model and the real data is the
result of two different sources: the measurement
noise and the process noise (variation in biolog-
ical behavior). In this project, only the error in
the parameters caused by measurement error is
addressed. The variation in the parameters due to
biological reasons is supposed to be compensated
by performing the experiments in duplicate, a
regular practice for biological systems.

To isolate the measurement error, each experi-
ment was identified individually and then the dif-
ference between the measured and the predicted
values of the resonances was used as an indicative
of the measurement error. Then, an average of this
indicative over the five different experiments was
obtained. Here, a noise standard deviation of 0.3
RU was computed. This value has been used for
all calculations of the confidence levels.

4.3 Optimized experiment

The main goal of this paper is to show that opti-
mizing the profile can lead to shorter experiments
to reach the same or even a better confidence in
the estimated parameters. As explained before, an
initial value of the parameters is required to per-
form the optimization. For this, a first experiment
is performed with CA = 75 nM, ton = 240 s, and
toff = 360 s, as in the previous case. Next, the
optimization problem (26) was solved using the
following parameters values: βa : 1%, βd : 9%,
ηmax : 1.239e−4 m, Cmax : 300nM, and Tmax :
2400 s.

The last three values were obtained from the ref-
erence experiments presented in Fig. 1, such that
the maximum amount of analyte, the maximum

concentration of the analyte and the total time
have to be less or equal to those used during the
reference experiments.

The obtained optimal profile was to inject the
analyte at its maximum concentration of 300 nM
for a period of 300 seconds and to let the disso-
ciation for 275 seconds. Note that the association
time is longer to reach higher resonance values.
The dissociation time needed to get the same
confidence in kd is then reduced. A margin was
provided during the experiments (using periods of
330s and 310s respectively) in order to assure that
the confidence levels were reached. The resonance
signals of the initial 75 nM experiment and the
optimized 300 nM experiment are shows in Fig 2.

4.4 Comparison

The parameter values and the confidence levels
obtained for both the reference and optimized
experiments are presented in Table 1. In this table,
the total time is calculated taking into account the
time for the buffer signals as well as the duplicate
experiment. The estimated values obtained for the
rate constants were very close to the ones obtained
by the software supplied by the manufacturer of
the equipment (Biacore).

Table 1. Results of the identification for
reference and optimal experiments

Reference Optimal
profile profile

k̂a (M−1s−1) 1.07× 104 0.88× 104

ξa(%) 0.8 1

k̂d(s−1) 0.65× 10−4 1.2× 10−4

ξd(%) 9.1 7.4

Qty of analyte(m) 2.79× 10−4 2.34× 10−4

Total time (min) 120 73

It can be clearly seen that optimizing the second
experiment leads to better results in many ways.
The total time is quite shorter and the confidence
is better. The amount of analyte to reach that
confidence is even lower than for the reference
experiments.

5. CONCLUSION

The results shown in the present paper clearly
demonstrate the multi-fold advantages of using
optimization in the planning of experiments. From
the point of view of biological system identifica-
tion, this paper shows that one could be to save
time and analyte consumption, while obtaining
higher confidence. From the point of view of op-
timizing experiments, instead of performing an
unconstrained optimization using a criteria based
on the Fisher information matrix, it is interesting
to see how all the user specifications could be
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Fig. 1. Resonance signals from the reference experiments - 10 experiments without any optimization
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Fig. 2. Resonance signal resulting from a first non-optimized experiment with 75nM injection and a
second optimized profile with 300nM injection

effectively included in a constrained optimization
framework suitable for experimental planning.
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