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Abstract: The challenge for real-time optimization-based control systems is to
efficiently handle uncertainty. A novel approach for closed-loop optimization is
presented that systematically combines a fast update strategy with rigorous
optimization when necessary. A parametric sensitivity-based technique is used
to calculate optimal first-order updates to a nominal reference solution. The
technique does not assume that the active constraint set remains the same after
changes in uncertain parameters. In closed-loop, the approach is very effective
to handle uncertainty while requiring only a minimum number of full real-
time optimizations reducing the on-line computational expense. The approach
is illustrated by simulations of closed-loop real-time optimizations of a semi-
batch reactor described by a model with different kinds and ranges of parametric
uncertainty. It is observed that the closed-loop updated solution is almost identical
to the true optimal solution corresponding to uncertainty.
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1. INTRODUCTION

Increasing competition requires a more agile
chemical plant operation in order to increase pro-
ductivity under flexible operating conditions while
decreasing the overall production cost (Backx et

al., 1998). This demands an integration of eco-
nomic optimization and control. However, exist-
ing applications use either stationary real-time
optimization or off-line dynamic optimization to-
gether with linear model-based control. These
techniques are limited with respect to the achiev-
able flexibility and economic performance, es-
pecially when considering intentionally dynamic
processes such as continuous processes during
transitions or batch processes. Off-line dynamic
optimization and trajectory tracking is not fully
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satisfactory for on-line application in the plant
due to model uncertainty, process disturbances
and changes in the external market conditions
(e.g. future product demand). A basic schematic
of dynamic real-time optimization (D-RTO) is
shown in Figure 1 (left); its structure is identical
to nonlinear model predictive control (NMPC)
with output feedback. It is referred to as sin-

gle level D-RTO. Controls are determined at the
jth sampling time tj by solving a dynamic op-
timization problem that minimizes an econom-
ical objective using a nonlinear process model
on the prediction horizon [tj , tfj

]. The prediction
horizon can be fixed (for continuous processes)
or shrinking (for optimal transitions with fixed
final time, e.g. batch operations). Estimates of
the current process states (x̂j) and disturbance

predictions (d̂j(t)) are provided by the solution



of an estimation problem e.g. by means of an
extended Kalman filter. Only the control (u) re-
siding on the first sampling interval [tj , tj+∆t̃] is
implemented in the plant. The problem is thus
repetitively solved to use the feedback through
measurements. For large-scale industrial applica-
tions, the D-RTO problem is computationally ex-
pensive to solve even if the solution on a previous
horizon is used to initialize the algorithm on the
current horizon (Binder et al., 2002). Due to the
large computational requirements larger sampling
intervals are demanded which may not be ac-
ceptable due to uncertainty. On the other hand,
the current solution may not significantly differ
from the previous one. Due to the complexity
of D-RTO its acceptance in industry is limited.
Hence, an integrated economic optimization and
control strategy is required, which is less complex
and hence computationally tractable in real-time,
and which provides approximate control profiles
of sufficient quality. We consider the two-level

D-RTO strategy (Kadam et al., 2002) shown in
Figure 1 (right) to address these requirements. A
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Fig. 1. Single level and two-level D-RTO

simple controller such as a PID controller or a
predictive controller using a linear, possibly time-
variant, model is used at the lower level to track
the reference trajectories of the outputs yref and
the controls uref provided by D-RTO at the upper
level. To reject uncertainty, the reference solution
is updated by a fast update technique at every
sampling time tj with the corresponding sample
interval ∆t̃. A so-called D-RTO trigger analyzes
the updates in real-time for optimality and valid-
ity. When an estimate of an uncertain parameter
differs from its nominal value, a re-optimization,
denoted by the counter i, is triggered at non-
equidistant sampling intervals ∆t̄≥∆t̃ if the op-
timality criteria is not met. Moreover, the closed-
loop strategy trades systematically off optimal
solution accuracy for computational efficiency.

Parametric sensitivity analysis (Fiacco, 1983) is
a strong tool to analyze an optimal solution for
perturbations at a set of parameter values. Con-
sequently, this analysis has been extensively used
in steady-state and dynamic optimization for cal-
culating updates due to parametric perturbations
(cf. Büskens and Maurer (2002)) because it de-
mands only negligible computational time. Diehl
et al. (2002) use such an approach to provide
updates as part of an NMPC algorithm tailored to

large–scale nonlinear processes. The applicability
of parametric sensitivity techniques, also referred
to as neighboring extremal control, depends upon
the strong assumption that the active constraint
set does not change with perturbations, which
is often quite restrictive. The assumption is only
valid for sufficiently small perturbations entering
the optimization problem. In this paper we focus
on a sensitivity-based fast solution update in case
of a changing set of active constraints in combi-
nation with a D-RTO trigger to initiate rigorous

re-optimization. The paper is organized as follows:
Section 2 presents a D-RTO problem formulation
and discusses its numerical solution. The sensitiv-
ity analysis is given in Section 3. It is followed by
the presentation of an algorithm integrating the
techniques into the two-level approach. An illus-
trative example of dynamic real-time optimization
of a semi-batch reactor is presented in Section 5.

2. PROBLEM FORMULATION AND
SOLUTION

The main objectives of a D-RTO are minimiza-
tion of operating cost and flexible and feasible
operation in the presence of uncertainties. At tj ,
the closed-loop single-level or two-level D-RTO
problem with a fixed final time tf , denoted by
the counter j and i respectively, reads as

min
u(t)

Φ(x(t), u(t), d̂j(t)) (P)

s.t. f̄(ẋ(t), x(t), y(t), u(t), d̂j(t)) = 0; x(tj) = x̂j ,

ḡ(y(t), u(t), d̂j(t)) ≥ 0; t ∈ [tj , tfj
].

For simplicity of notation, the superscript j of
all the quantities in the this problem formulation
is omitted. In closed-loop, the problem is solved
repetitively at every tj after a set of measurements
(as feedback after the implementation of the con-
trol u(tj−1)) and a subsequent estimation of the

initial state x̂j and uncertainty d̂j(t) are available.
Due to the fixed final time considered here, at
tj+1=tj+∆t̃, the previous time horizon [tj , tfj

] is
reduced by one sample interval ∆t̃, i.e. tfj+1

=tfj
.

In this formulation, Φ is a scalar economic ob-

jective function to be minimized over the time
horizon [tj , tfj

]. x(t) ∈ R
nx denote the system

states with consistent initial conditions x̂j at time
tj ; and y(t) ∈ R

ny are the algebraic variables.
While, u(t) ∈ R

nu denote the control variables.
f̄(·) : R

nx × R
nx × R

ny × R
nu × R

nd → R
nx+ny

contains a differential-algebraic (DAE) process
model. Any operational (path and endpoint) con-
straints are collected in ḡ(·) : R

ny ×R
nu ×R

nd →
R

nḡ . Furthermore, uncertainties (e.g. uncertain
model parameters, disturbances) are collected in
the vector d(t)∈R

nd . The elements of d(t) can be
either dependent on time or not. We consider here
that a time-dependent uncertainty di(t) (e.g. a



drift in a reaction kinetic parameter) is parame-
terized by some expansion di(t)=

∑

k∈K
cdi,k

φk(t),
i=1, . . . , nd. The coefficients [cdi,k

] and other time-
independent uncertain parameters are collected in
a vector of uncertain parameters p ∈ R

np which
is estimated along with the initial state xj from
past measurements.

The D-RTO problem (P) is solved numerically by
a control vector parametrization (CVP) approach
(Kraft, 1985). The dynamic optimization problem
is converted into a nonlinear programming prob-
lem (NLP) by time-discretizing the controls u on
the time horizon [tj , tfj

] and using piecewise poly-
nomial approximations. For the sake of simplicity,
we consider a piecewise constant approximation
ui(tk)=cui,k

, k=1, . . . , N, i=1, . . . , nu, where N is
the number of discretization intervals. Choosing
the discretized controls z := [cui,k

] ∈ R
nz , nz =

nu ·N , as the optimization variables, problem (P)
can be transformed into the NLP

min
z

f(z, p) := Φ(z, p) (PD)

s.t. g(z, p) ≥ 0.

The NLP problem is solved by employing an
SQP algorithm. The objective function f : R

nz ×
R

np → R, constraints g(·) : R
nz × R

np → R
ng ,

ng=nḡ · N , and their gradients are evaluated by
a simultaneous integration of the DAE model and
the sensitivity equation system for given z and
p. We employ the dynamic optimization solver
DyOS (2002) in this work.

3. SENSITIVITY ANALYSIS

3.1 Basic concepts

Let us consider the NLP (PD) for sensitivity anal-
ysis. The objective function f(·) and constraints
g(·) are assumed to be at least twice continuously
differentiable in z. The Lagrangian function of the
constrained optimization problem (PD) is defined
as L(z, p, λ) = f(z, p) − λT g(z, p), where λ ∈ R

ng

is the vector of Lagrange multipliers. Let us con-
sider z∗0 , λ∗

0 as the nominal 2 optimal solution of
problem (PD) corresponding to p0. To simplify
notation, the superscript * is omitted in the se-
quel. At the optimal solution, the constraints g

are divided into the active constraints ga and
the inactive constraints gina of dimension na

g and
ng−na

g , respectively. The corresponding Lagrange
multipliers λ0 are divided accordingly into λa

0 and
λina

0 . The active constraint set is denoted by G0.
The first order necessary conditions of optimality
(NCO) are 3 :

2 A nominal quantity (·)0 is evaluated at p0.

3 (·)z =
∂(·)
∂z

, (·)zz =
∂2(.)

∂z2 , (.)zp =
∂2(.)
∂z∂p

Lz(z0, p0, λ0) = 0, (NCO)

ga
i (z0, p0) = 0; λa

0,i > 0; i = 1, . . . na
g ∈ G0,

gina
j (z0, p0) > 0; λina

0,j = 0; j = 1, . . . nina
g 6∈ G0.

Let the NCO and the strong second order suf-
ficient conditions (SSC) be satisfied at z0 and
λ0. Further, the active constraint gradients ga

z

are linearly independent. Also, assume that the
active constraint set G at the changed parame-
ter value p = p0+∆p is the same as G0. With
these assumptions, Fiacco (1983) proved that the
functions z = z(p) and λa = λa(p) are at least
once differentiable in p. In the vicinity of p0, the
parametric sensitivities zp := dz

dp
and λa

p := dλa

dp
of

the optimal solution can be calculated by differen-
tiating the NCO with respect to z, λa and p. The
resultant linear equation system (Fiacco, 1983) to
be solved is

[

Lzz(·) −ga,T
z (·)

ga
z (·) 0

] [

zp

λa
p

]

= −

[

Lzp(·)
ga

p(·)

]

(1)

where all the functions are evaluated at z0, p0, λ0.
A first order update due to a perturbation ∆p can
thus be calculated from a Taylor expansion as

∆z := z(p) − z0 = zp(p0)∆p, (2a)

∆λa := λa(p) − λa
0 = λa

p(p0)∆p, (2b)

∆λina := λina(p) − λina
0 = 0. (2c)

In order to solve equation (1), we need first or-
der partial derivatives of the constraint functions
gz, gp and second order partial derivatives of the
Lagrange function Lzz, Lzp. This computation re-
quires a significant effort which can be prohibitive
for large-scale problems. Finite difference for-
mulae or automatic differentiation (Nocedal and
Wright, 1999) can be used to provide sufficiently
accurate second order derivatives.

3.2 The case of a changing active set

For a moderate perturbation ∆p, the active con-
straint set G(p) can change. It is unknown a-priori
whether such a change actually occurs. At the new
optimal solution z(p0+∆p), some of the nominally
active constraints ga(z0, p0) or the nominally in-
active constraints gina(z0, p0) can become inactive
or active. Therefore, equation (1) is reformulated
as the QP problem (Ganesh and Biegler, 1987)

min
∆z

0.5∆zT Lzz(·)∆z (3a)

+∆pT LT
zp(·)∆z + fT

z (·)∆z

s.t. gz(·)∆z ≥ −gp(·)∆p − g(·), (3b)

where all the functions are evaluated at z0, p0, λ0.
The solution of this QP problem, the updates
∆z and new Lagrange multipliers λ̄=λ(p0 + ∆p),
corresponds to taking a Newton step (not neces-
sarily full) of ∆z from z0 of problem (PD) while
respecting all inequality constraints to first or-
der. The solution also detects a new active set



Ḡ := G(p0 + ∆p) which is a better estimate of
the true active set. Note that the updates always
satisfy all constraints to first order, which cannot
be guaranteed for the solution of the sensitivity
equation system (1) due to the potential changes
in the active set. If the active set does not change,
the solutions of problems (3) and (1) are the same.

For computing Lzz and Lzp, an estimate of the
true active set G and the corresponding Lagrange
multipliers λ have to be known a-priori. One
can use the nominal active set G0 as an initial
guess and iterate as detailed below. Moreover,
the Lagrange function is non-differentiable in z, p

at a point where the active set changes. We
assume strict complementary, e.g. λ̄(g0(z0, p0) +
gz(z0, p0)∆z + gp(z0, p0)∆p) = 0, at any so-
lution of QP (3). With this assumption, non-
differentiability does not pose any difficulty in
computing solutions of the QP problem, since
the second-order derivatives are computed using a
fixed active set. Again, note that ∆z, λ̄ and Ḡ are
feasible with respect to the linearized constraints
(3), albeit the true active set may be different.
Better optimal solution updates can be calculated
by solving the QP problem iteratively to account
for a change of the active set. The iterative strat-
egy is as follows:

(1) By using a finite difference formula, compute
fzz, gzz, fzp, gzp at the nominal optimal solu-
tion z0 corresponding to p0.

(2) If the NLP (PD) is nonlinear in p calculate
fz, gz and gp at z0 and the changed un-
certain parameter value p=p0+∆p by doing
a sensitivity integration to account for the
perturbation ∆p; and assign ∆p:=0.

(3) Initialize iteration k:=0, zk:=z0 λk:=[λa
0 , 0],

Gk:=G0.
(4) Assemble Lzz and Lzp from the pre-computed

fzz, gzz, fzp, gzp using λk and Gk.
(5) Solve QP (3) to obtain ∆zk, zk, λ̄k and Ḡk.
(6) Set λk+1 = λ̄k, Gk+1 := Ḡk, and k := k+1. If

the active set is changed go back to step (4).
(7) Calculate g, fz, gz and gp by doing a sensi-

tivity integration for the updated solution zk

from steps (4)-(6) and p from step (2). If still
g(zk, p) < 0 go back to step (3).

(8) Declare that optimal updates z = zk, λ = λk

and G := Gk have been calculated.

The reduced Hessian strategy of Ganesh and
Biegler (1987) can be employed to efficiently solve
QP (3). For a given range of uncertainty, the
accuracy of the updates is usually acceptable.

4. FAST UPDATE AND D-RTO TRIGGER

It is assumed that the perturbations ∆p are mea-
sured or estimated without time delay, and a per-
fect controller is available to reject disturbances

that are not considered in p, and which affect
during the current sample interval. Fast updates

of the controls are calculated as

z(p) = z0 + ∆z i.e. u(t) = u0 + ∆u(t) (4)

with ∆z being the solution of QP (3). Output and
state trajectories are updated by integrating the
DAE model in p for the updated control.

The optimality error of the updated inputs z(p) is
defined here as residuals

εopt =
‖Lz(z, p, λ)‖∞

‖λ‖2
; εinfs =

‖g(z, p)‖∞
‖z‖2

. (5)

It is comprised of the error in the Lagrange sen-
sitivity (εopt) and the nonlinear constraint in-
feasibility (εinfs), which quantify optimality and
feasibility of the updated controls with respect to
uncertainty. Note that any changed active con-
straint set is taken into account in this calcula-
tion. We define τopt, τinfs as a maximum allowable
optimality error given by a controller. If the D-

RTO trigger criteria, εopt>τopt and εinfs>τinfs,
are met a re-optimization is triggered to get a new
set of optimal control and output trajectories.

The fast update (counter j) and D-RTO trigger
(counter i) are embedded in the two-level strategy
shown in Figure 1(right). The iterative algorithm
is as follows: 4

(1) Set counter i:=1 and counter j:=1;
(2) Solve the upper level D-RTO (P) on t∈[0, tfj

]
to obtain the reference solution zi

ref , λi
ref ,

yi
ref (t) computed at p0. Assign z

j
ref=zi

ref ,

y
j
ref = yi

ref as the reference trajectories for
the lower level control and fast update.
Compute Lj

zz, L
j
zp by finite differences.

(3) for j = 2, N (number of sample intervals) do

(a) At tj , implement the control uj−1(tj−1)
and get the measurements yj and es-

timates x̂j , d̂j to update pj .
(b) Reduce the time horizon for a batch op-

eration by ∆t̃ i.e. tj=tj−1+∆t̃, tfj
=tfj−1

.
On the reduced horizon, assemble the
shifted reference discretized controls z̄

j
ref ,

λ̄
j
ref Lj

zz, L
j
zp from the corresponding

quantities z
j−1
ref , λ

j−1
ref , Lj−1

zz , Lj−1
zp on the

previous horizon [tj−1, tfj−1
].

Evaluate the constraints gj and sensitivi-
ties f j

z , gj
z for the controls z̄

j
ref , estimated

parameters pj and states x̂j by doing a
sensitivity integration.

(c) Fast update: Solve QP (3) to ob-
tain ∆zj ,λj and Gj . Calculate the up-
dated controls z

j
ref=z̄

j
ref+∆zj and the

Lagrange multipliers λ
j
ref=λj . Compute

4 A reference quantity (·)ref is any currently available

quantity to be updated, and which is evolved through the

previous fast updates and any rigorous re-optimizations.



y
j
ref by doing one integration of the DAE

model for the updated control.
(d) Compute the optimality error (εopt, εinfs)

of the updated controls and check the D-

RTO trigger criteria:
if (εopt>τopt) and (εinfs>τinfs)
trigger a re-optimization and solve D-
RTO (P) (set i:=i+1) to get new optimal
references z

j
ref = u

j
ref , y

j
ref , λj .

(4) end for; batch operation completed.

5. ILLUSTRATIVE EXAMPLE

A semi-batch reactor is considered here, which is
derived from the continuous Williams-Otto bench-
mark reactor described by Forbes (1994). The
following reactions are taking place in the reactor:

A + B
k1−→ C, C + B

k2−→ P + E, P + C
k3

−→ G.
The reactor is fed initially with a fixed amount
of reactant A; reactant B is fed continuously. The
first-order reactions produce the desired products
P and E. Product G is a waste. As the reactions
are exothermic, the heat produced has to be re-
moved from the cooling jacket by manipulating
the cooling water temperature. A detailed dy-
namic process model and its parameters are given
elsewhere (Kadam and Marquardt, 2003). During
reactor operation, path constraints on the feed
rate of reactant B (FBin

), reactor temperature
(Tr), hold-up (V ) and cooling water temperature
(Tw) should be respected. FBin

and Tw are the
control variables. For this illustration the reactor
is run for a fixed batch time of 1000 sec.

The operational objective is to maximize the yield
of the main products at the end of batch. The
dynamic optimization problem reads as

max
FBin

(t),Tw(t)
Φ(tf ) = cpnp(tf ) + cene(tf ) (6)

s.t. process model, and

0 ≤ FBin
(t) ≤ 5.784

kg

sec
, V (tf ) ≤ 5 m3,

20 ≤ Tw(t) ≤ 100
�

, 60 ≤ Tr(t) ≤ 90
�

.

The initial reactor temperature Tr,0 and feed tem-
perature Tin are fixed at their nominally optimal
values of 60

�
and 35

�
, respectively, calculated

by off-line optimization. A disturbance ∆Tin af-
fects the feed temperature at, say, t=250 sec dur-
ing batch operation. It is assumed to be measured
directly. Further, the parameter b1 in the reaction
kinetic equation k1=a1 exp( b1

Tr+273.15 ) is assumed
to vary about ±25% from its nominal value b1 =
6666.7 sec−1. This parameter is assumed to be
estimated on-line. We collect Tin and b1 in the
vector of uncertain parameters p. The two-level
D-RTO strategy is applied in closed-loop in the
presence of the aforementioned uncertainty and
disturbance.

Problem (6) is solved by employing DyOS (2002)
to obtain a reference solution. Each control profile
is time-discretized and approximated as piecewise
constant function on 32 equidistant intervals to
transform problem (6) into the NLP (PD). The
nominal optimal control and constraint profiles
are depicted in Figure 2 by bold lines. These
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Fig. 2. Nominal and closed-loop simulation pro-
files of control and constraint variables:
∆b1=+10% and ∆Tin=−10

�
at t=250 sec

profiles have different arcs corresponding to active
and inactive parts of the path constraints, which
are characterized as follows: FBin

is initially kept
at its upper bound and then switched to its lower

bound when the reactor hold-up (V ) reaches its
upper bound. The second control variable Tw is
manipulated to move the reactor temperature (Tr)
to its lower bound at t=140 sec and keep it there.
At the switching time t=360 sec, Tr is moved
away from its lower bound by manipulating Tw

in a bang-bang profile with the switching times
computed implicitly by optimization. Note that
Tw is at its lower bound at t=0 sec and quickly
switched to its upper bound.

Two cases of uncertainty and disturbances are
considered: a) ∆b1=+10% and ∆Tin=−10

�
at

t=250 sec, and b) ∆b1=−25% and ∆Tin=−10
�

at t=250 sec. The algorithm of the two-level
strategy with the fast update and D-RTO trigger
described in Section 4 and Figure 1 (right) is ap-
plied in closed-loop. The closed-loop control and
constraint profiles are shown in Figure 2 and 3
for the cases a) and b), respectively. The profiles
shown by dash-dotted lines depict the response
of the fast update and D-RTO trigger strategy.
Moreover, the profiles shown by dashed lines de-
pict the response of repetitive re-optimizations
i.e. the single level D-RTO strategy (Figure (1)).
When the algorithm is employed, only once a re-
optimization was triggered at t=125 sec in case
a) and none in case b). It can be observed in
the figures that the closed-loop updated solution
is almost identical to the true optimal solution
(depicted by dashed lines) using the fast update
strategy with only a minimum number of re-
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Fig. 3. Nominal and closed-loop simulation pro-
files of control and constraint variables:
∆b1=−25% and ∆Tin=−10

�
at t=250 sec

optimizations triggered. Note that the structure
of the true optimal solution is drastically different
from that of the nominal solution. Most interest-
ingly, in case b), FBin

is stopped at t=282 sec,
and again switched back to its upper bound at
t=656 sec until the reactor hold-up reaches its
upper bound. Furthermore, the reactor temper-
ature is never at either of its bounds, while Tw

is at its lower bound throughout the operation.
These changed active sets are correctly and timely
detected, and the batch operation is optimized
in real-time. The computational time of one it-
erate of the D-RTO trigger integrated two-level
strategy is approximately 15 sec. It is significantly
smaller than approximately 60 sec required for a
re-optimization which is warm-started with the
nominal solution.

6. CONCLUSIONS

A novel solution update and D-RTO trigger strat-
egy are developed for providing real-times updates
and initiating a rigorous re-optimization when
necessary. These techniques are integrated into
a closed-loop two-level D-RTO strategy. With a
case-study, it is pointed out that the nominally
active constraints set can drastically change with
perturbations in uncertain parameters. Hence, in
such cases, parametric sensitivity based input up-
date techniques that assume a constant active set
(Büskens and Maurer, 2002) are not applicable.
Changed active sets due to perturbations are de-
tected, and first order updates are calculated by
solution of a D-RTO problem consistent QP sub-
problem. Furthermore, the accuracy of closed-loop
updates is acceptable. The two-level approach
with the D-RTO trigger is shown to be quite
effective in rejecting a large range of uncertainty in
model parameters, and process disturbances. The
closed-loop updated solution is almost identical
to the true optimal solution corresponding to a
perturbation in uncertain parameters. Moreover,

when the accuracy of fast updates is not accept-
able, the D-RTO trigger handles uncertainty by
triggering a rigorous re-optimization.
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