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Abstract: It is shown that when an appropriate dithering signal is used in the
reference of a specific process DSR gives eigenvalue estimates with smaller bias and
variance than PEM on finite closed loop data. As dithering signal a sinusoid signal
at different frequencies have been tried. Comparing the optimums of DSR and
PEM we find that DSR provide eigenvalue estimates with smaller bias and variance
at its optimum than PEM does at its. When using an external dithering signal in
the reference the choice of the frequency of the dithering signal is important when
using the input and output data for direct system identification in closed loop.
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1. INTRODUCTION

The reason for the problems that can occur when
applying subspace identification (SID) algorithms
for direct identification of closed loop data is the
projection of the future outputs onto the future
inputs. Future inputs and future outputs are as-
sumed to be uncorrelated. In closed loop operation
this assumption is not necessarily fulfilled. This is
the cause of the bias. Di Ruscio (2003) shows that
using a filter in the feedback loop is a method
to reduce the bias problem. It is also stressed
that biased estimates may be more reliable than
estimates from an unbiased algorithm because
the variance may be small. Van Overschee and
De Moor (1996), (1997) are suggesting to use

the Markov parameters of the controller in the
algorithm to avoid the problem. The controller
is assumed to be linear. Chou and Verhaegen
(1997) have developed a SID algorithm for Errors
In Variables (EIV) problems. They have shown
that this algorithm will give consistent estimates
on closed loop data, if a persistence of excitation
requirement is satisfied. This leads to the use of
signals with relatively high order of persistent
excitation in the reference. Gustafsson (2001) has
proposed an Instrument Variable (IV) approach
SID algorithm as an improvement of the already
existing EIV algorithm of Chou and Verhaegen
(1997). The modified algorithm is named SIV
(Subspace-based Identification using instrumen-
tal Variables). Our work is based on the already



existing SID algorithm named DSR, Aoki and
Havenner (1997), Di Ruscio (1996). We want to
examine if an external dithering signal used in
the reference of a system operating in closed loop
can lead to improved parameter estimates. This
is an idea presented in Di Ruscio (2003) together
with the experience that an optimal experiment
for the subspace methods is in general not a white
noise input, but rather a colored input where
the frequency spectrum is optimized to excite the
parameters in the system as well as possible. The
estimates from DSR will be compared to esti-
mates from PEM (Prediction Error Method) in
the system identification toolbox in Matlab 6.5. A
description of prediction error methods in general
and their properties can be found in amongst
others Ljung (1999).

The rest of this paper is organized as follows. A
model of a chemical reactor operating in closed
loop is presented in Section 2.1. This model will be
used throughout the paper. The effect of using a
sinusoid signal as dithering signal in the reference
of the chemical reactor operating in closed loop
is investigated in Section 2.2. Closed loop eigen-
value estimates are presented i Section 2.2.1. In
Section 2.2.2 the parameter estimates from DSR
are considered as a function of the frequency of
the sinusoid signal used as dithering signal and
the prediction horizon used in DSR. In Section
2.2.3 the parameter estimates from DSR, with a
constant prediction horizon, and the parameter
estimates from PEM are presented as functions
of the frequency of the sinusoid signal used as
dithering signal. Alternative quality measures are
presented in section 2.2.4. The results are com-
pared. Some concluding remarks follows in Section
3.

2. A CASE STUDY IN CLOSED LOOP
SYSTEM IDENTIFICATION

2.1 A model of a chemical reactor operating in
closed loop

In order to generate closed loop data we choose
to use a model of a chemical reactor operating
in closed loop. The reaction mechanism of the
reactor is given by:

AtLp* o (1)
245, p. (2)

The reaction from body A to body D is of order
two, while the other reactions are of order 1. The
manipulated variable is the feed flow (flow rate) u
[-=1—]. The concentration of body A in the feed

hours
flow, u, is 6. The concentration of body A and

body B in the tank is respectively x1 and xo. The
connection from u to y = x9 is then given by the
model:

By =kix1 — kox? — zou, (4)
y = x27 (5)

where the reaction rate constants are given by
k1 = 50, ko = 100 and k3 = 10. The stationary
values of the states, disturbances, parameters and
manipulated variable are given: z§ = 2.5, x5 =1,
0° = 10 and u® = 25. We assume that 6 is constant
and known.

Defining;:
dup =uy —u’, (6)
oxr =z — 2°, (7)
oy =yx —Y°, (8)
80y =0 — 6°, (9)

a linearized discrete model can be expressed on
the form:

dxpr1 = Adzy + Bouy + CO0y, + vg,  (10)
oyr = Doxy, + Eduy + wy, (11)

where we in addition have added additive process
and measure noise, v and wy, respectively.

After linearization and discretization the system
is expressed by:

A:[0.8750 0 }732[0.0075]

0.0500 0.8750 —0.0010
0.0250
Cz[ 0 },D:[Ol] (12)

and the matrix E is the zero matrix. The lin-
earization is done at the stationary point. The
discretization is done by explicit Euler with uni-
form sampling interval ¢ = 0.001. We consider a
time series from 0 to 1, with N=1001 discrete data
points, k =0,1,..., N.

The body B is controlled by a PI-controller with
kp =50 and T; = % The PI-controller on discrete
form is given by:

U = kpek + 2k, (13)

k
_I?ekv (14)

Zkt1 = 2k + 5th

where ey, is given by:



€L =Tk — Yk- (15)

The linearized reactor model, (10) and (11), and
the PI-controller, (13) and (14), are used in order
to generate closed loop data which will be used
throughout this paper for closed loop system
identification. The reference will be constant ry =
1 at each time instant k, superposed a dithering
signal. The noise used is significant. The process
noise variance used is E(vgvy) = 0.1 - I and the
measuring noise variance used is E(w3?) = 0.0001.
The reason for using a linearized discrete model of
the chemical reactor is that we want to compare
the estimated eigenvalues to the eigenvalues of the
linearized discrete model. The closed loop system
is illustrated in Figure 1.
|
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Fig. 1. System operating in closed loop

2.2 The effect of using a sinusoid signal as
dithering signal in the reference of a chemical
reactor operating in closed loop

2.2.1. Closed loop eigenvalue estimates A sinu-
soid signal with frequency w = 600 [rad/s] and
with magnitude £0.1 is chosen as dithering signal.
The reference at time instant k is given by:

rp =14+ 0.1 sin(wdtk). (16)

We find it natural to compare DSR with PEM im-
plemented in the system identification toolbox in
Matlab 6.5. Throughout the paper the stationary
values in both inputs and outputs will be removed
prior to identification. Initial parameter estimates
to PEM is provided by canstart in the Matlab
system identification toolbox with the parameters
chosen as: orders =2, D=1, K=1and X = 1.

The system was simulated 100 times. The same
input was used each time but the noise realization
was changed each time. Figure 2 shows the esti-
mated eigenvalues from the Monte Carlo simula-
tion. The linearized discrete system have multiple
poles, actually two real eigenvalues at 0.875. The
parameters in DSR, are chosen as: n = 2, g = 0,
L = 12 and J = 13. The default parameters are
used in PEM. Figure 2 shows that by using an
appropriate dithering signal DSR can provide an
eigenvalue estimate with smaller bias and variance
than PEM on data from a system operating in
closed loop.

Eigenvalues: PEM Eigenvalues: DSR
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Fig. 2. Monte Carlo simulation using a con-
stant reference superposed a sinusoid signal
as dithering signal, r, = 1 4 0.1 - sin(wdtk)
with w = 600, using DSR with n = 2, g = 0,
L =12 and J = 13 and PEM with default
parameters for identification.

We have to make a remark that PEM in this
case actually gives some estimates with unstable
eigenvalues. To improve the estimates from PEM
we have tried to reduce the tolerance (Tol) from
the default value 0.01 and increase the maximum
number of iterations (MaxlIter) from the default
value 20. Several values were tried with Tol as
low as 0.0001 and MaxIter as high as 20000. This
did not improve the estimates from PEM. By
increasing the tolerance to 0.02 and reducing the
maximum number of iterations to 15 we observed
a marginal improvement of the estimates from
PEM. Because of the insignificant improvement
of the estimates from PEM when changing the
algorithm parameters from the default values we
have chosen to use the default values in PEM.
An additional comment on the estimates from
PEM with unstable eigenvalues is that when using
Matlab 6.1 PEM does not only give estimates with
eigenvalues larger than 1, but also eigenvalues
with more negative values than -1. When using
Matlab 6.0 we get approximately the same values
as when using Matlab 6.5.

Table 1 contents the mean and the standard
deviation (Std) of the eigenvalues of the estimated
system matrices from the Monte Carlo simulation
when using DSR. Table 2 contains corresponding
data from PEM. The data in Table 1 and Table 2
support the conclusion from the visual inspection
of Figure 2, that DSR gives estimates with smaller
bias and variance than PEM in this case.

2.2.2. The parameter estimates from DSR as a
function of the prediction horizon and the fre-
quency of the sinusoid signal used as dithering
signal in the reference  In DSR there are four
parameters g, n, L and J that can be chosen by
the user. If the structure parameter g is 1, which
is the default, the data matrix E in the state space
model is identified. If g is put to zero the matrix



Table 1. Mean and standard deviation

from the Monte Carlo simulation using

a constant reference superposed a sinu-

soid signal as dithering signal, r, = 1+

0.1 - sin(wdtk) with w = 600, and using

DSR with n = 2, g = 0, L = 12 and
J = 13 for identification.

[ DSR [ Pole 1 | Pole 2 |
Re Im)] Re Im)]
Mean | [0.9203 0.0006 ] | [0.8612 -0.0006]
Std 0.0043 0.0027] [ [0.0202 0.0027]

Table 2. Mean and standard deviation
from the Monte Carlo simulation using
a constant reference superposed a sinu-
soid signal as dithering signal, r, = 1+
0.1 - sin(wdtk) with w = 600, and using
PEM with default parameters for iden-

tification
[ PEM [ Pole 1 [ Pole 2 |
Re Im)] Re Im)]

Mean 0.9325 0.0241
Std 0.0538 0.0349

0.7692 -0.0241 |
0.1758 0.0349)]

E is forced to be the zero matrix. The param-
eter n specify the model order. The parameter
L is the number of block rows in the extended
observability matrix. L can be interpreted as the
identification horizon used to predict the number
of states. This again limits the maximal system
order which can be identified. The order must be
chosen in the interval 1 < n < L -m, where m
is the number of outputs. The parameter J is the
number of time instants in the past horizon which
is used defining the instrument variable matrix
which are used to remove noise.

The experience so far in open loop cases is that the
parameter L should be chosen as small as possible
in order to reduce the variance of the estimates.
This is especially important in case of poorly ex-
citating input signals. The parameter J is usually
chosen as J = L or J = L + 1. It is normally not
crucial which of these two alternatives which are
chosen.

Related to this it is interesting to consider the
quality of the parameter estimates from DSR as
a function of the frequency, w, of the dithering
signal and the identification horizon, L, in the
algorithm when data is collected from a system
operating in closed loop. The parameter J is
chosen as J = L + 1. The system used is still
the chemical reactor operating in closed loop (10),
(11), (13) and (14). Now we do not only consider
a Monte Carlo simulation at one frequency but
Monte Carlo simulations in 25 [rad/s] steps from
25 [rad/s] up to the Nyquist frequency which is
the half of the sampling frequency. To evaluate

the quality of the estimated model parameters
we choose to use a quadratic criterion on the
eigenvalues of the estimated model. The criterion
used sums up the square of the deviation between
the eigenvalues of the estimated model and the
actual eigenvalues. The quality criterion (17) is
presented using Matlab notation where \(A) R €
R™ is the vector of the eigenvalues of the true state
transition matrix and A(A4;) R € RY is the vector
of the estimated eigenvalues of the state transition
matrix at Monte Carlo run number i. M is the
total number of Monte Carlo runs.

M
V= Z Re(A(4:) — Re(A(A)1F +
1;41 -
> Im(A(A)) — Im(A(A)[F (A7)
i=1

The squared Frobenius norm of a matrix A €
R™*™ is equal to the trace of the product AT A,
and defined as follows:

A7 = tr(ATA) =) ") "al (18)
i=1 j=1

For a complex number ¢ = a + j - b we define:

Re(c) = a and Im(c) = b. (19)

Figure 3 shows the criterion (17) as a function
of w and L. Each point in the figure is the sum
given by (17) from a Monte Carlo simulation at a
specific w with a specific L.

Fig. 3. The quality criterion (17) as a function of
w and L when using a constant reference su-
perposed a sinusoid signal as dithering signal,
rp = 140.1-sin(wdtk), and DSR with n = 2,

=0 and J = L + 1 for identification.

From Figure 3 it is obvious that the choice of w
is the most crucial parameter. When zooming in
Figure 3 for w in the interval up to 1000 [rad/s]
we get Figure 4. Figure 4 shows that in this closed
loop data set it is not favorable to choose L as
small as possible as in open loop cases.
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Fig. 4. The quality criterion (17) as a function of
w and L when using a constant reference su-
perposed a sinusoid signal as dithering signal,
rp = 140.1-sin(wdtk), and DSR with n = 2,
g=0and J =L+ 1 for identification.
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2.2.8. Comparing the parameter estimates from
DSR and PEM as functions of the frequency of
the sinusoid signal used as dithering signal in
the reference In Figure 5 PEM and DSR are
compared as functions of w of the sinusoid signal
used as dithering signal in the reference. The
criterion used is given by (17). DSR is used with
L =12 and J = L + 1. From Figure 5 two
important notes have to be done. The estimates
from PEM and DSR have optimums for dithering
signals in different frequency ranges. DSR can
actually give estimates with smaller bias and
variance than PEM by choosing an appropriate
frequency of the dithering signal.

and E is till the zero matrix. The parameters to
be estimated in the observable canonical form are
collected in a parameter vector:

9 = [a21 a2 b11 bgl}. (21)

The true parameter vector is:

6 = [-0.7656 1.7500 — 0.0010 — 0.0005].(22)

In figure 6 the estimated parameters in the param-
eter vector from DSR and PEM are compared as
a function of the runs in the Monte Carlo simula-
tion. The reference is given by (16) with w = 600.
DSR is used with the parameters n = 2, g = 0,
L = 12 and J = 13. The parameter estimates
from DSR all have small variance. The parameters
b11 and b1 have a bias, but considering the scale
of the axes the bias is marginal. The parameter
estimates from PEM are characterized by large
variance compared to the estimates from DSR.
The mean and standard deviation of the parame-
ters in the parameter vector are listed in Table 3
and Table 4 for respectively DSR and PEM.

Table 3. Mean and standard deviation

from the Monte Carlo simulation using

a constant reference superposed a sinu-

soid signal as dithering signal, r, = 1 +

0.1 - sin(wdtk) with w = 600, and using

DSR with n = 2, g = 0, L = 12 and
J = 13 for identification

50
ast-
a0 !
35 : . b
30 i

Vo251 !

20
15

10

o 500 1000 1500 2000 2500 3000
w

Fig. 5. The quality criterion (17) as a function
of w, when using a constant reference super-
posed a sinusoid signal as dithering signal
rp = 1+ 0.1 - sin(wdtk), and the estimates
from PEM with default parameters and DSR
with n = 2, g =0, L = 12 and J = 13.
PEM is illustrated by the solid line and DSR
is illustrated by the broken line

2.2.4. Alternative closed loop quality measures
Transforming (12) to observable canonical form
gives system matrices with the following struc-
ture:

A= { 0 1 },B: [b”},D:[l 0],(20)

a1 G22 bo1

[ DSR [ a21 [az2 [ bu | b1 |
Mean | -0.7925 | 1.7815 | -0.0057 | -0.0037
Std 0.0185 0.0201 | 0.0003 0.0001

Table 4. Mean and standard deviation
from the Monte Carlo simulation using
a constant reference superposed a sinu-
soid signal as dithering signal, i, =1+
0.1 - sin(wdtk) with w = 600, and using
PEM with default parameters for iden-

tification.
[ PEM [ as [ a2 [ bu | ba1 |
Mean | -0.7194 | 1.7024 | -0.0014 | -0.0004
Std 0.1732 0.1814 | 0.0027 0.0018

A common quality measure is the simulated error
(SE) which is the deviation between the real out-
puts in Y and the simulated outputs in Y. Using
the squared Frobenius norm (18) we introduce the
Squared Simulated Error (SSE):

SSE =Y - Y?%. (23)

The SSE is plotted for DSR and PEM in figure (7)
for the data generated to evaluate the estimation
of the parameters in the parameter vector.

The SSE from the parameter estimates from DSR,
have smaller bias and variance than the SSE from
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Fig. 6. The parameter vector (21) as a function of
the runs in the Monte Carlo simulation using
a constant reference superposed a sinusoid
signal as dithering signal, vy = 1 + 0.1 -
sin(wdtk) with w = 600, using DSR with
n=2¢g=0,L=12and J =13 and PEM
with default parameters for identification.
PEM is illustrated by the solid line, DSR is
illustrated by the broken line and the true
value is illustrated by the dash dotted line.
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Fig. 7. Squared Simulated Error (SSE) for each of
the runs in the Monte Carlo simulation using
a constant reference superposed a sinusoid
signal as dithering signal, r, = 1+ 0.1 -
sin(wdtk) with w = 600, using DSR with n =
2,g=0,L =12 and J = 13 and PEM with
default parameters for identification. PEM
is illustrated by the solid line and DSR is
illustrated by the broken line.

the parameter estimates from PEM. Actually the
mean and standard deviation of the SSE is re-
spectively approximately 5.5 and 2.8 for DSR.
The corresponding values from PEM are both
exceeding working precision. This because of the
unstable models from PEM shown in Figure 2.

3. CONCLUDING REMARKS

Our simulations on finite data sets from a system
operating in closed loop have shown that by using
an appropriate dithering signal in the reference
the DSR algorithm can provide eigenvalue esti-
mates with smaller bias and variance than PEM,
from the system identification toolbox in Matlab
6.5. As dithering signal we have tried sinusoid

signals at different frequencies. We have observed
that DSR and PEM have optimums in different
frequency ranges. Comparing the optimums of
DSR and PEM we find that DSR gives eigenvalue
estimates with smaller bias and variance at its
optimum than PEM does at its.

An other observation is that DSR provide eigen-
value estimates with smallest bias and variance
when the dithering signal is low frequent.

When using an external dithering signal in the ref-
erence the choice of the frequency of the dithering
signal is the most crucial parameter when using
DSR on closed loop data, except the choice of
model order which is not treated in this work.
When choosing the prediction horizon L in DSR it
is important to use an L that is large enough. This
is opposite of what is used in identification of open
loop data. Then keeping L as small as possible
helps keeping the variance small, especially when
input signals are poorly excited.
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