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Abstract: New applications in materials, medicine, and computers are being discovered 
where the control of events at the molecular and nanoscopic scales is critical to product 
quality, although the primary manipulation of these events during processing occurs at 
macroscopic length scales. This motivates the creation of tools for the design and control 
of multiscale systems that have length scales ranging from the atomistic to the 
macroscopic. This paper describes a systematic approach that consists of stochastic 
parameter sensitivity analysis, Bayesian parameter estimation applied to ab initio calcula-
tions and experimental data, model-based experimental design, hypothesis mechanism 
selection, and multistep optimization.  Copyright © 2004 IFAC 
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1. INTRODUCTION 

 
New applications in materials, medicine, and 
computers are being discovered where the control of 
events at the molecular and nanoscopic length scales 
is critical to product quality, although the primary 
manipulation of these events during processing 
occurs at macroscopic length scales (e.g. temperature 
of the system, valves on flows into and out of the 
system, applied potential between two electrodes). 
These applications include nanobiological devices, 
micromachines, nanoelectronic devices, and protein 
microarrays and chips (Drexler, 1992; Hoummady 
and Fujita, 1999; Lee et al., 2003; Prokop, 2001; 
Sematech, 2002; Tsukagoshi, 2002). While many of 
these devices are designed using highly simplified 
models or trial-and-error experimentation, recent 
advances in computer speed and memory, numerical 
algorithms, and sensor technologies suggest that a 
more systematic approach to the design and control 
of these multiscale systems is possible. 
 
The potential applications motivate the creation of 
tools for the design and control of multiscale systems 
that have length scales ranging from the macroscopic 

to the atomistic. This paper describes the challenges 
to building such multiscale systems tools, which 
include uncertainties in the physicochemical mecha-
nisms as well as the values of thermodynamic and 
kinetic parameters, complexities in the simulation of 
model equations that can span a wide range of time 
and length scales, lack of manipulated variables and 
direct measurements of most properties at the nano-
scale during processing, and the inapplicability of 
most existing systems tools to address systems 
described by noncontinuum and dynamically coupled 
continuum-noncontinuum models. These challenges 
specify the requirements for multiscale systems tools. 
 
This paper describes how these requirements can be 
satisfied by a systematic approach to the design and 
control of multiscale systems that consists of stochas-
tic parameter sensitivity analysis, Bayesian parameter 
estimation applied to ab initio calculations and ex-
perimental data, model-based experimental design, 
hypothesis mechanism selection, and multi-step op-
timization. This enables multiscale systems to be 
designed and controlled based on the numerical 
algorithms that are most appropriate for simulating 
each of the length scales of the process. 



 

     

2. CHALLENGES AND REQUIREMENTS 
 
The challenges associated with the design and con-
trol of multiscale systems specify the requirements 
for multiscale systems tools. To make the description 
of the challenges as concrete as possible, the manu-
facture of on-chip copper interconnections in elec-
tronic devices is used as an illustrative example. In 
this process, an applied potential is used to electro-
deposit copper on surfaces and in trenches and vias. 
The product quality of the deposit is a function of 
nucleation at the atomic scale, surface morphology at 
the nanoscale, shape evolution at the nano- to micro- 
length scales, and deposit uniformity over the wafer 
surface. This electrodeposition process involves phe-
nomena that are simultaneously important over ten 
orders of magnitude in time and length scales (Alkire 
and Verhoff, 1995; 1998). According to the Intern-
ational Technology Roadmap for Semiconductors 
(Sematech, 2002), the manufacture of next-genera-
tion interconnects will require design and control of 
all of these length scales. 
 
Figure 1 is a schematic of the electrodeposition of 
copper into a trench, in which Cu2+ ions in solution 
diffuse and migrate to the surface in response to a 
potential applied between the reference and working 
electrodes. Although the introduction of organic 
chemical additive cocktails to the solution to produce 
void-free copper deposits in sub-100 nm trenches is 
well established (Andricacos, 1999; Andricacos et 
al., 1998), the precise physicochemical mechanisms 
of the interactions of these additives with the copper 
surface are not well understood (Datta and Landolt, 
2000; Kondo et al., 2004; Moffet et al., 2000; 2001; 
2004; Tan and Harb, 2003; West, 2000), making it 
difficult to design new additive cocktails able to 
produce void-free deposits in smaller features. A 
challenge in applying systems principles to these and 
other multiscale systems is that the underlying mech-
anisms, as well as the thermodynamic and kinetic 
parameters associated with the steps in these mecha-
nisms, are uncertain. Multiscale systems tools are 
needed that can handle uncertain mechanisms, as 
well as uncertain parameters. 
 
Another challenge to engineering multiscale systems 
is that the codes used to simulate these systems are 
computationally expensive. For example, consider 
Figure 2, which is a schematic of a multiscale sim-
ulation model for the electrodeposition of copper into 
trenches. Chemical reactions and the diffusion and 
migration of species in the solution boundary layer 
are described by a system of partial differential-
algebraic equations, which are typically simulated 
using the finite volume or finite element method. The 
height of the boundary layer is typically ~50 µm and 
a typical time step for such a code is ~1 ms. The 
nucleation, surface chemistry, and roughness evolu-
tion of the trench surface are most accurately simu-
lated using noncontinuum methods such as kinetic 
Monte Carlo (KMC) simulation (Battaile et al., 
1997; Drews et al., 2004a; Henkelman and Jónsson, 
2001; Levi and Kotrla, 1994; Yang et al., 2002). 

KMC methods are used to simulate structural prop-
erties of matter that cannot be represented by a 
macroscopic continuum description. A KMC simula-
tion is a realization of the Master equation (Fichthorn 
and Weinberg, 1991): 
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where σ and σ' are successive states of the system, 
P(σ, t) is the probability that the system is in state σ 
at time t, and W(σ',σ) is the probability per unit time 
that the system will undergo a transition from state σ' 
to σ. For a particular system being studied, the KMC 
code chooses randomly among the possible transi-
tions of the system and accepts particular transitions 
with appropriate probabilities. After each accepted or 
attempted transition, the time variable is incremented 
by one Monte Carlo time step (typically the time step 
is ~1 ns), and the process is repeated. By selecting 
the probabilities to satisfy certain conditions, the real 
time variable t corresponding to the number of Monte 
Carlo time steps can be computed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Electrochemical process for manufacturing 

on-chip copper interconnects, in which a rotating 
disk creates a boundary layer above the wafer 
surface (not drawn to scale). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Multiscale simulation of the electrochemical 

process for manufacturing on-chip copper inter-
connects (not drawn to scale). The dots represent 
Cu2+ ions in solution, with the film on the surface 
being metallic copper. 
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The bottom part of Figure 2 shows the infill of 
several trenches simulated using a three-dimensional 
(3D) KMC code, that tracks adsorption, desorption, 
bulk and surface diffusion, and chemical reactions 
(Drews et al., 2004bc). To reduce the computational 
load, the 3D KMC code was coarse-grained (Gear et 
al., 2003; Ismail et al., 2003ab; Jönsson et al., 2003; 
Lopez et al., 2002; Shelley and Shelley, 2000), such 
that clusters of molecules were tracked instead of 
individual molecules (Drews et al., 2003b; Katsou-
laokis et al., 2003; Katsoulakis and Vlachos, 2003; 
Pricer et al., 2002ab), and periodic boundary con-
ditions were used at all sides of the simulation do-
main. Even with these simplifications, it takes ~1 day 
to perform one simulation run. This greatly limits the 
number of simulation runs that a systems tool is 
allowed to make in a coupled simulation-optimi-
zation algorithm such as used in control vector pa-
rameterization (Ray, 1981). Further, systems tech-
niques that write the simulation code as an algebraic 
system of equations to be embedded into a structured 
nonlinear program (Jockenhovel et al., 2003), are not 
computationally feasible for multiscale systems, as 
there would be >1016 algebraic equations in the 
structured nonlinear program. Multiscale systems 
tools must be much more computationally efficient 
than most existing systems tools. Note that the state 
dimension of KMC codes is very high, while the 
numbers of simulation inputs (e.g., applied potential) 
and outputs (e.g., surface roughness, fraction of 
voids) are much lower. This motivates the creation of 
multiscale systems tools that act directly on simula-
tion inputs and outputs, to keep the computational 
cost low. 
 
As a further complication, the codes in Figure 2 must 
be dynamically coupled when dilute additives are 
included in the simulation, as the surface chemistry 
and transport determines the amount of depletion of 
additives in the boundary layer, and the boundary 
layer influences the rate that chemical species reach 
the surface. Multiscale systems tools are needed that 
can handle models described by dynamically coupled 
continuum and noncontinuum codes. 
 
Another characteristic of noncontinuum codes is that 
their outputs typically have significant stochastic 
fluctuations, which can be non-Gaussian. For exam-
ple, Figure 3 is the current density response from a 
dynamically coupled KMC-finite difference simula-
tion of copper electrodeposition in response to a 
staircase function of the applied potential (Rusli et 
al., 2003). The current density only takes on discrete 
values, which are associated with electron transfer at 
the copper surface (e.g., as a Cu2+ ion gains two 
electrons to form copper metal). This response is in 
sharp contrast to the typical step and staircase 
responses reported in the controls literature (Levine, 
1996; Ray, 1981). Although most existing systems 
tools are applicable to stochastic models with 
Gaussian fluctuations, these tools always assume that 
the deterministic part of the model is known. 
Multiscale systems tools must be able to address 

models with large amounts of non-Gaussian noise, 
for which a deterministic model is unavailable. 
 
Another challenge in multiscale systems is the lack 
of key measurements during processing at industri-
ally relevant operating conditions. For example, the 
only on-line measured variables for the copper elec-
trodeposition process are temperature and current. 
There are no concentration measurements at the 
surface, where the uncertain chemical mechanisms 
and most of the uncertain parameters are located. The 
key measurement data, which are atomic force mi-
croscopy images, are only available at the end of the 
process (see Figure 4). Multiscale systems tools must 
include experimental design methods that maximize 
the information from sensors, to create models that 
are predictive. 
 
Another characteristic of multiscale systems is a lack 
of manipulated variables at the molecular and nano-
scopic length scales during processing. For example, 
the only variable manipulated during the electro-
deposition process in Figure 1 is the applied poten-
tial, which does not provide enough degrees of free-
dom to produce void-free copper in the 0.13 µm 
trenches used in modern microelectronic devices. 
This is why industrial practice is to introduce addi-
tional degrees of freedom in the initial conditions, 
which is done through the selection and concentra-
tions of organic chemicals added to the solution. In 
general, most multiscale systems require that molecu-
lar and nanoscale manipulation be treated as a 
design focus, to exploit self-assembly during process-
ing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Current density response to a staircase func-

tion of applied potential for the dynamically cou-
pled simulation of the electrochemical process for 
manufacturing on-chip copper interconnects (each 
step of the staircase was 10 s long). 

 
 
 
 
 
 
 
 
Fig. 4. Atomic force microscopy image of an electro-

deposited copper surface. 
 



 

     

3. COMPLEX SYSTEMS TOOLS 
 
Before looking at multiscale systems tools, it is 
useful to review some systems tools developed for 
complex continuum models that address most, but 
not all, of the challenges of multiscale systems (see 
Figure 5). The first step is the identification of the 
model, which is an iterative procedure. The first ex-
periment is designed using engineering judgment on 
how to excite the dynamics of the system, or is 
computed using initial estimates of the model pa-
rameters and some experimental design objective 
such as minimizing the uncertainties in the param-
eters (Atkinson and Donev, 1992; Bard, 1974; Beck 
and Arnold, 1977). Improved estimates of the param-
eters and an associated uncertainty description are 
computed from the dynamic data collected from the 
experiment. This can be augmented with ab initio 
computational chemistry calculations (such as den-
sity functional theory) using Bayesian parameter 
estimation techniques (Gunawan et al., 2003b). When 
several hypothesized physicochemical mechanisms 
are available, model discrimination techniques are 
used to select which mechanism is most consistent 
with the experimental data techniques (e.g., Burke et 
al., 1997; Gunawan et al., 2002b; Reilly et al., 1974). 
The model parameters and uncertainty description 
are used to design the next laboratory experiment, 
which can be constructed to further reduce the model 
uncertainties or to maximize the ability to distinguish 
among the multiple hypothesized mechanisms (At-
kinson and Donev, 1992). Parameter estimates ob-
tained from this iterative procedure can be many 

orders-of-magnitude more accurate than estimates 
obtained from data collected from trial-and-error 
experimentation. Once the model parameters are ac-
curate enough, the simulation model is incorporated 
into an optimization algorithm to compute the phy-
sical design variables, initial conditions, startup pro-
cedures, setpoint trajectories, and the feedback con-
trol system. 
 
These complex systems tools are well established for 
continuum models described by general integro-
partial differential algebraic equations (IPDAEs), and 
have been applied to the manufacture of photo-
graphic chemicals (Matthews and Rawlings, 1998), 
pharmaceuticals (Braatz, 2002; Fujiwara et al., 
2004), and semiconductors (Gunawan et al., 2004). 
These applications have been to a wide range of real 
physical systems at Merck, Eastman Kodak, and 
Sematech (an international consortium of semicon-
ductor companies), indicating the wide applicability 
of these tools. The key to the generality of these tools 
is that they act directly on the inputs and outputs of 
simulation codes, rather than requiring a particular 
form for the equations or the numerical algorithm 
used to simulate the equations. Also key to providing 
generality is that the numerical algorithms imple-
mented in the steps in Figure 5 incorporate parameter 
sensitivity methods based on finite differences (e.g., 
Beck and Arnold, 1977; Caracotsios and Stewart, 
1985; Kamrunnahar et al., 2004) or automatic dif-
ferentiation (Cao et al., 2002; 2003; Feehery et al., 
1997; Galan et al., 1999; Li et al., 2000). The param-
eter sensitivities improve the numerical conditioning 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Iterative process of model identification and robust optimization of complex systems: u represents all 

experimental design variables (e.g., initial conditions, processing conditions, actuator and sensor locations), y 
represents the measurements, θi is the vector of model parameter estimates and Eθi is the confidence region 
for the ith hypothesized mechanism, θ is the vector of parameter estimates and Eθ is the confidence region 
for the most likely mechanism, û is the optimal control policy (including initial conditions, equipment 
specifications, operating conditions, actuator and sensor locations, etc.), K is the optimal controller, and Eu is 
the uncertainty in the implementation of the optimal control policy, including the effects of disturbances. 
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of the systems tools while focusing the modeling 
effort towards only the key parameters whose values 
must be known with high certainty to produce pre-
dictive models. This is critical when the number of 
parameters is large, as is typical for semiconductor 
processes (Gunawan et al., 2003; Maroudas, 2000). 
 
In recent years fast techniques have been developed 
to quantify the effects of model uncertainties on all 
states and outputs for the batch and semibatch proc-
esses used to manufacture the most complex systems 
(Ayyub, 1998; Elishakoff, 1999; Ma et al., 1999; 
Matthews et al., 1996), and to integrate robustness 
into all design variables. Some of these techniques 
have little or no restrictions on the zero dynamics, 
the integro-differential structure of the equations, the 
simulation algorithms, or the form of the uncertain-
ties (Pan et al., 1998; Ma and Braatz, 2001; Nagy 
and Braatz, 2003b; 2004; Phenix, 1998; Tatang, 
1997). These analysis algorithms have been incorpo-
rated into optimization algorithms to produce designs 
and controllers that are robust to the uncertainties 
(Nagy and Braatz, 2003a; 2004). 
 
To illustrate the complexity of systems that can be 
addressed by these systems tools, consider their 
application to the manufacture of ultrashallow junc-
tions. The current technology for the formation of 
ultrashallow junctions in microelectronic logic de-
vices relies almost exclusively on ion implantation to 
introduce dopants into the substrate (see Figure 6). 
Although junctions can be made shallower by reduc-
ing the implant energy, the effectiveness of this 
approach has been limited by the need to anneal the 
resulting structure to over 1000°C both to activate 
the dopant electrically and to eliminate implant-
induced defects in the crystal structure (see Figure 7 
for an example temperature trajectory). Defects 
mediate unwanted diffusion of dopants during the 
anneal process, which leads to a significant undesired 
increase in the junction depth. The aforementioned 
systems tools have been applied to the post-implant 
annealing process, to construct a simulation model 
and to minimize the junction deepening while max-
imizing dopant activation.  
 
The simulation model includes the coupled mass 
balance equations for interstitial atoms, interstitial 
clusters, and related defects. These equations have 
the general form for species i: 
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where Ni denotes concentration and Gi is the net 
generation rate. The flux Ji incorporates terms due to 
diffusion and drift in response to electric fields. The 
model also includes Poisson’s equation describing 
the electric field generated by spatial imbalance of 
the charge density. The simulation model consisted 
of ~25 partial differential equations which were 
nonuniformly spatially discretized using between 
200 and 800 points in the depth direction, resulting in 

up to 20,000 extremely stiff ordinary differential 
equations that were solved using the public domain 
software FLOOPS (Law and Cea, 1998), which 
integrates the equations using a combination of the 
one-step trapezoidal rule and the multiscape back-
ward differentiation formula (Bank et al., 1985). 
 
The activation energies in the expressions for Gi and 
Ji were obtained by Bayesian parameter estimation, 
which incorporated information from density func-
tional theory (DFT) calculations, past experimental 
studies, and boron secondary ion mass spectroscopy 
data from the International Sematech consortium of 
semiconductor companies (Gunawan et al., 2003b). 
A combination of parameter sensitivity analysis and 
kinetic insights was used to select the physical 
mechanism (Gunawan et al., 2002a; 2003a), in which 
the most important part was the specification of the 
network of chemical reactions for the clusters. 
Parameter sensitivity analysis was a necessity in the 
construction of the physical mechanism, as the 
number of kinetic parameters was large, including 18 
activation energies associated with the interstitial 
diffusion, cluster association, and cluster dissociation 
reactions. 
 
Ion Implantation 
 
 
 
 
 
 
 
Rapid Thermal Annealing 
 
 
 
 
 
 
 
 
Fig. 6: Schematic diagram of the junction increase 

that takes place during rapid thermal annealing 
after ion implantation of dopant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. A typical rapid thermal anneal temperature 

program, which consists of a stabilization step 
and a spike-anneal (i.e., a fast linear heating step 
followed by a natural cool down step). 

Time (s)

0 10 20 30 40 50 60 70

T
e
m

p
e
ra

tu
re

(o
C

)

0

200

400

600

800

1000

1200



 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Experimental and simulated boron dopant 

profiles, for two batch operating recipes (Gun-
awan et al., 2003b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Comparison of junction depth–sheet resis-

tance pairs from various published experimental 
papers and TED simulations employing various 
heating and cooling rates, and annealing tempera-
tures. The Sematech curve summarizes the sheet 
resistance and junction depth data in experimental 
studies performed by International Sematech 
(Gunawan et al., 2003b).  

 
The complex systems tools in Figure 5 permitted the 
construction of a clear picture of the fundamental 
kinetic processes that govern diffusion and electrical 
activation of dopant (Jung et al., 2003; 2004a). The 
agreement between the simulated and experimental 
boron dopant profiles was within 2 nm for the entire 
junction (see Figure 8). To provide further validation 
of the simulation model, the junction depth and sheet 
resistance (this is a measure of dopant activation) 
were computed for a wide range of temperature 
profiles, and compared to a large number of experi-
mental values reported in the literature and to the 
“Sematech curve,” which summarizes additional ex-
perimental values (see Figure 9). The predictions of 
the simulation model are highly consistent with 
reported experimental values. 
 
The simulation model was incorporated into an 
optimal control problem to compute an annealing 
temperature trajectory that minimized the junction 
depth while maintaining a desirable level of boron 
activation (Gunawan et al., 2004). Robustness analy-
sis as shown in Figure 5 was applied to rigorously 
quantify the performance degradation from uncer-

tainties in the feedback control implementation and 
the model parameters. The analysis indicated that 
limited improvement in product quality is achievable 
using existing metrology and rapid thermal proc-
essing controllers. 
 
As discussed in Section 2, the limited actuation 
available at macroscopic length scales motivates the 
application of molecular design, and it was argued 
that the potential impact of such design optimization 
can be much greater than the potential benefit of 
improved feedback control. As it is highly advanta-
geous in terms of electronic device properties to 
restrict the chemistry to dopant and silicon mole-
cules, we have been keeping the atomic species 
unchanged, but using the simulation model to change 
the bond structure at the silicon surface (Jung et al., 
2004). We have shown that the effects of the struc-
ture of bonds at the silicon surface have a substantial 
effect on the junction depth, due to a change in the 
effective surface boundary condition for interstitials. 
These simulation studies have motivated discrete 
changes in processing conditions, which are being 
evaluated in a systematic experimental study (Dev et 
al., 2004). 
 
These complex systems tools address most of the 
requirements for application to multiscale systems, in 
that non-Gaussian stochastic behavior and uncertain 
mechanisms and parameters are taken into account; 
the tools are computationally efficient, general pur-
pose, and act directly on simulation inputs and out-
puts; experimental design methods are included that 
maximize the information from sensors to create pre-
dictive models; and that design and control are op-
timized simultaneously, which enables molecular and 
nanoscale manipulation in the design problem to be 
considered jointly with the manipulation of the on-
line variables by feedback controllers during pro-
cessing. The complex systems tools; however, do not 
consider all of the issues particular to models de-
scribed by noncontinuum and coupled continuum and 
noncontinuum simulation codes, namely, the lack of 
an underlying deterministic model for the non-
continuum simulation codes, and the additional nu-
merical stability issues that can arise when codes are 
linked. The next section discusses efforts to extend 
these complex systems tools to address these two 
additional requirements of multiscale systems. 
 
 

4. NONCONTINUUM AND COUPLED 
CONTINUUM/NONCONTINUUM CODES 

 
For the noncontinuum models that describe complex 
systems, the optimizations that occur in the model-
based experimental design, Bayesian parameter esti-
mation, hypothesis mechanism selection, and optimal 
design and control steps in Figure 5 are stochastic 
with no closed form expression for the underlying 
deterministic system. For KMC codes, it has been 
proposed to construct reduced-order models by trun-
cating unlikely configurations and grouping proba-
bilities that evolve together (Gallivan and Atwater, 
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2004; Gallivan and Murray, 2003; 2004), using 
smaller lattices (Lou and Christofides, 2003ab), or 
applying least-squares systems identification meth-
ods (Gallivan, 2003; Gallivan et al., 2000). Similar 
reduced-order models have been defined for dynami-
cally coupled continuum/noncontinuum codes (Rai-
mondeau and Vlachos, 2000; Rusli et al., 2003). 
Although such approaches are acceptable for con-
troller design, one of the main points in Section 2 is 
that molecular and nanoscale manipulation should be 
treated as a design problem, to exploit self-assembly 
during processing – not primarily as feedback con-
troller design. For design purposes, the reduced-order 
models must be a function of the physicochemical 
parameters in the simulation codes to be manipulated 
in the design optimization, which can be changed 
through modifying the chemistry of the system, 
rather than as a function of macroscopic manipulated 
variables such as temperature. Developing reduced-
order models that are globally applicable and a 
function of both the physicochemical parameters and 
the macroscopic manipulated variables is a challeng-
ing problem, considering the high computational cost 
of the simulation codes. 
 
Another consideration is that simulation codes which 
include molecular-scale phenomena are stochastic, 
which implies that averaging techniques (Rusli et al., 
2003) or stochastic optimization algorithms such as 
simulated annealing are appropriate (Aarts and 
Korst, 1989). We have shown that even the finite 
difference calculation of parameter sensitivities typi-
cally used in systems engineering algorithms must be 
formulated as a stochastic optimization, to obtain 
estimates of the highest accuracy (Drews et al., 
2003a). More specifically, the finite difference ex-

pressions for sensitivities reported in textbooks and 
papers are derived assuming that the underlying 
system can be described as a deterministic Taylor 
series expansion, whereas this assumption is invalid 
for simulations that include noncontinuum models, 
whose outputs are stochastic. A much more accurate 
and appropriate formulation is to include a stochastic 
term in the series expansion, and determine the finite 
difference expression by solving an optimization 
problem whose objective is to compute either the 
minimum variance or maximum likelihood estimate 
of the parameter sensitivity. As in continuum models, 
these parameter sensitivities are a key step needed to 
reduce the complexity and improve the numerical 
conditioning of the stochastic optimizations that 
define the systems tasks in Figure 5. 
 
Recently we incorporated our stochastic parameter 
sensitivity algorithm into a multi-step optimization 
algorithm (Raimondeau et al., 2003), that uses 
sensitivity analysis to determine the key parameters, 
followed by solution mapping to parameterize the 
responses of the simulation model as low-degree 
polynomials of the key parameters, and simulated 
annealing to optimize the key parameters. The low-
order parameterization is used to reduce the number 
of runs of the computationally expensive stochastic 
simulation code required to converge to the parame-
ter estimates. This revised algorithm (see Figure 10) 
has been used to estimate kinetic parameters associ-
ated with copper electrodeposition from measure-
ments of the applied potential and the surface using 
atomic force microscopy images (see Figure 4), 
where the simulation model consisted of a coarse-
grained KMC code dynamically coupled to a finite 
difference continuum code (Drews et al., 2003c).  

 
Fig. 10. A simplified schematic of the multi-step optimization algorithm for parameter estimation in stochastic 

simulation codes. Kinetics from ab initio calculations such as DFT are included using a Bayesian form-
ulation (Gunawan et al., 2003b). 
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Fig. 11. Time- and length-scale mismatches at inter-

faces between simulation codes can be modeled 
as perturbations ∆i on the information passed 
between simulation codes. The effects of these 
mismatches and uncertainties in kinetic param-
eters in the individual simulation codes on the 
simulation outputs can be analyzed using non-
linear systems theory and uncertainty-based sim-
ulation techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. A coupled simulation with “master-worker” 

computational paradigm. The stripes in the cop-
per deposit denote the location of KMC simula-
tions. The zoom-in picture of the copper deposit 
shows the distinction of the actual surface mor-
phology and the surface seen by the MB code in 
the simulation. 

 
This application coarse-grained the KMC code to 
further reduce the computational expense; other ac-
celeration methods such as the tau-leaping (Gillespie, 
2001; Gillespie and Petzold, 2003; Rathinam et al., 
2003) and gap-tooth methods (Gear, et al., 2003) 
could be applied, in isolation or in addition to coarse-
graining. Recall that coupling simulation codes in-
duce an additional systems issue – linkage instabil-
ities. While numerically stable codes are available 
for simulating each length scale, numerical instabil-
ities can be induced in the coupling of such codes by 
temporal and spatial mismatches at the interfaces 
between the codes. Control systems theory has been 
used to design numerical linkage algorithms that 
modify the dynamic information passed between the 
simulation codes to numerically stabilize their cou-
pling, and to increase the numerical accuracy of the 
simulation results (Drews et al., 2004c, Rusli et al., 

2004ab). In this approach, the simulation codes are 
represented by deterministic or stochastic discrete-
time nonlinear operators, with mismatches at the 
interfaces between simulation codes modeled as 
norm-bounded perturbations, as is commonly done in 
robust control theory (see Figure 11). Further, results 
from nonlinear systems theory have been applied to 
produce a constructive procedure for testing whether 
an arbitrary interconnection of simulation codes is 
well-posed (Rusli et al., 2004ab), and a sufficient 
condition for the numerical stability of dynamically 
coupled simulation codes. 
 
More recently we have been using nonlinear systems 
theory to guide the design of much more complex 
dynamic coupling of simulation codes than shown in 
Figure 11. An improved simulation model for the 
electrochemical process used to manufacture copper 
interconnects (shown in Figures 1 and 2) is shown in 
Figure 12. The multiscale simulation model couples 
multiple instances of a solid-on-solid KMC simu-
lation code (Drews et al., 2004a) to an internally 
coupled moving boundary (MB) finite-volume/level 
set continuum simulation code (Chang et al., 1996; 
Li et al., 1999; Wheeler et al., 2003) to simulate the 
filling of on-chip features (trenches) by electrodep-
osition in the presence of additives. The KMC and 
MB simulations dynamically pass interface condi-
tions during the simulations. The MB code sends 
surface concentrations and the solution potential to 
each KMC code, which computes reaction rates from 
the simulation of the chemistry and physics that 
occur at the electrode surface. The KMC codes send 
species fluxes to the MB code which are used as 
surface boundary conditions. The MB code advances 
the copper-solution interface using the level-set 
method, and simulates the chemistry and physics in 
the electrolyte in and above the trench using the 
finite volume method. 
 
It is useful to relate the systematic approach of this 
paper to projective methods for constructing bifur-
cation maps (Koronaki et al., 2003; Schroff and 
Keller, 1993; Siettos et al., 2003a; Tuckerman and 
Barkley, 2000). Projective methods satisfy one of the 
key requirements for multiscale systems tools de-
scribed in Section 2, in that they act directly on the 
inputs and outputs of simulation codes. Although 
originally developed for continuum codes, these 
methods can be applied to noncontinuum codes 
(Gear et al., 2002; Gear and Kevrekidis, 2004; Hum-
mer and Kevrekidis, 2003; Makeev et al., 2002ab; 
Siettos et al., 2003a). It is straightforward to show 
that these methods apply to dynamically coupled 
continuum/noncontinuum codes as well. The main 
assumption underlying the projective methods is the 
requirement of a clear separation of time scales (Gear 
et al., 2002; Runborg et al., 2002), which holds for 
some but not all physical systems (note that the 
aforementioned methods in Sections 3 and 4 do not 
require a clear separation in time scales). For systems 
in which this assumption holds, projective methods 
enable the analysis of the nonlinear dynamical be-
havior of multiscale systems, which can be used for 
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an initial assessment of whether the qualitative dy-
namic behavior of a hypothesized mechanism is 
consistent with experimental observations. Hypothe-
sized mechanisms with qualitative dynamics that are 
consistent with experiments are removed from fur-
ther consideration in the mechanism selection step in 
Figure 5. 
 
 

5. CONCLUSIONS 
 
This paper describes the characteristics of multiscale 
systems, using the manufacture of on-chip copper 
interconnections as a specific example to illustrate 
the key points. These characteristics specify the 
requirements for multiscale systems tools. One of the 
key points was that limitations in manipulations 
available during processing for most multiscale sys-
tems imply that a much larger impact on product 
quality can be achieved from molecular design rather 
than on designing better feedback controllers. Sys-
tems tools applicable to complex continuum models 
were summarized that satisfy the requirements for 
multiscale systems, except for issues specific to deal-
ing with noncontinuum and coupled noncontinuum-
continuum codes. This was illustrated in an appli-
cation to the manufacture of ultrashallow junctions. 
An extension of the complex systems tools to deal 
with the requirements of multiscale systems was de-
scribed, that incorporates stochastic sensitivity anal-
ysis within a multistep optimization algorithm. 
 
Although the systems principles are the same for 
multiscale systems as for macroscopic systems, the 
problem formulations and the numerical algorithms 
designed to solve these formulations are different. 
Further, a new issue arises in multiscale systems, 
which is how to address numerical instabilities that 
can arise during the linkage of individual simulation 
codes. Some results in applying nonlinear control 
theory to design numerical linkage algorithms were 
described. More theory is needed to provide a sys-
tematic methodology for the numerical stabilization 
of multiscale simulation codes, and on algorithms for 
Bayesian parameter estimation, model-based experi-
mental design, hypothesis mechanism selection, and 
robust optimization. 
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