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Abstract: The problem of bounding the states of a linear time varying hybrid
system at fixed transition times where the mode sequence is allowed to vary is
considered. It is shown via an illustrative example that a simple decomposition
algorithm produces weak bounds which get worse as the number of epochs
increases. To address this issue, a novel algorithm is proposed, based on solving
families of relaxed linear programming problems, which allows the incorporation of
additional constraints derived from physical insight. This provides tighter bounds
while avoiding explicit enumeration of all possible mode trajectories.
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1. INTRODUCTION

Continuous time hybrid systems have become the
modeling framework of choice for a wide variety of
applications that require detailed dynamic models
with embedded discontinuities. In general, these
time dependent, nonlinear models exhibit model
switching and state jumps as a consequence of
both time and state dependent events (Barton and
Lee, 2002). Hybrid system models are important
in many areas of science and engineering, includ-
ing the analysis of digital circuits, signaling and
decision making mechanisms in (biological) cells,
robotic systems, air and ground traffic manage-
ment systems, sequential operations, safety inter-
lock systems, and embedded systems. Economic
and safety considerations in these applications,
such as the automated design of safe operating
procedures and the formal verification of embed-
ded systems, strongly motivate the development

1 This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCR-0208956.

of algorithms and tools for the global optimization
of hybrid systems.

Many modern, general methods for deterministic
global optimization in Euclidean spaces rely on
the notion of a convex relaxation of a nonconvex
function (McCormick, 1976). This is a convex
function which underestimates a nonconvex func-
tion on the set of interest. The convex programs
that result from convex relaxation of all noncon-
vex objective and constraint functions in a prob-
lem formulation can (in principle) be solved to
guaranteed global optimality, which, for example,
can be used to generate rigorous lower bounds on
the nonconvex problem for a branch and bound
(B&B) algorithm (Horst and Tuy, 1993).

Recently, a convexity theory has been developed
that enables well known symbolic convex relax-
ations on Euclidean spaces (McCormick, 1976;
Adjiman et al., 1998) to be harnessed in the con-
struction of convex relaxations of general, non-
convex Bolza type functionals subject to an em-
bedded linear time varying (LTV) hybrid system



where the transition times are fixed, and the se-
quence of modes, Tµ, is known (Lee et al., 2004).
The construction of a set enclosing the image of
the parameter space under the solution of the
hybrid system, X

(i), is critical for obtaining tight
(accurate) convex relaxations of the participating
functionals. Note that X

(i) represents the state
bounds for the embedded hybrid system for all
values of the parameters. The better the estimate
of X

(i) is, the tighter the relaxations obtained.
Consequently, tighter lower bounds are obtained,
increasing the efficiency of the global optimization
algorithm.

In (Barton and Lee, 2003), a mixed-integer re-
formulation is proposed to deal with the problem
when Tµ is allowed to vary and becomes an opti-
mization parameter. This results in a nonconvex
mixed-integer nonlinear programming (MINLP)
problem. In particular, auxiliary optimization pa-
rameters, Z, are introduced to represent the ini-
tial conditions for each epoch. In this case, X

(i)

becomes a larger set containing the image of the
parameter space under the solution of the hybrid
system for all possible Tµ, and the bounds on Z are
obtained from estimating X

(i) at the time events,
i.e., the state bounds at the beginning of each
epoch.

For analogous reasons to those presented above,
it is very desirable to obtain tight bounds for Z,
as these bounds are needed to construct a convex
relaxation of the nonconvex MINLP. Although the
exact state bounds at the beginning of each epoch
can be obtained with an explicit enumeration
of all possible Tµ, the cost of doing so clearly
becomes prohibitive (increases exponentially) as
the number of epochs increases. To deal with this
problem, a decomposition algorithm for estimat-
ing valid state bounds was proposed in (Barton
and Lee, 2003).

In this paper, we formally present the decompo-
sition algorithm, and show that it produces weak
bounds which deteriorate as the number of epochs
increases. To address this issue, a novel algorithm
is proposed to obtain tighter state bounds, based
on solving a family of relaxations of mixed-integer
linear programming (MILP) problems as LP prob-
lems.

2. LTV HYBRID SYSTEMS

The modeling framework of (Barton and Lee,
2002) is used to define the LTV hybrid system of
interest. The time horizon is partitioned into con-
tiguous intervals called epochs. We define a hybrid

time trajectory, Tτ , as a finite sequence of epochs
{Ii} terminating with epoch Ine

, where ne is fixed,
and is the total number of epochs. Each epoch is
a closed time interval Ii = [σi, τi] ⊂ R, σi = τi−1

for i = 2, . . . , ne, σ1 ≤ τ1, and τi−1 ≤ τi for all

i = 2, . . . , ne. For epoch Ii, the system evolves
continuously in time if σi < τi, and it evolves
discretely by making an instantaneous transition
if σi = τi. The continuous state subsystems are
called modes and the corresponding sequence of
modes for Tτ is called the hybrid mode trajectory,
Tµ. At the end of epoch Ii, a transition is made
from the predecessor mode in Ii to a successor

mode in epoch Ii+1, also called an event, when
the transition condition is satisfied.

Definition 1. The LTV ODE hybrid system of
interest is defined by the following.

1. An index set of modes potentially visited
along Tµ, M = {1, . . . , nm}, and a fixed Tτ

with given time events (i.e., explicit transi-
tion times) σ1, τ1, τ2, . . . , τne

. It is clear that
Tµ = {mi}, where mi ∈ M . Henceforth, the
superscript (m) will refer to any mode in M ,
while superscript (mi) will refer to the active
mode in epoch Ii;

2. An invariant structure system where the
number of continuous state variables is con-
stant between modes, V = (x(p, Tµ, t),p),
where p ∈ P ⊂ R

np , and x(p, Tµ, t) ∈ R
nx

for all (p, Tµ, t) ∈ P×Mne×Ii, i = 1, . . . , ne;
3. The LTV ODE system for each mode m ∈

M , which is given by

ẋ(p, Tµ, t) = A(m)(t)x(p, Tµ, t)+

B(m)(t)p + q(m)(t), (1)

where A(m)(t) is continuous on [σ1, τne
],

B(m)(t) and q(m)(t) are piecewise continu-
ous on [σ1, τne

] and defined at any point of
discontinuity, for all m ∈ M ;

4. The transition conditions for the transitions
between epochs Ii and Ii+1, i = 1, . . . , ne−1,
which are explicit time events:

L(mi) := (t = τi), (2)

indicating the transition from mode mi in
epoch Ii to mode mi+1 in epoch Ii+1 at time
τi;

5. The system of transition functions, which is
given by

x(p, Tµ, σi+1) = Dix(p, Tµ, τi)+Eip+ki,

∀ i = 1, . . . , ne − 1, (3)

for the transition from mode mi in epoch Ii

to mode mi+1 in epoch Ii+1; and
6. A given initial condition for mode m1,

x(p, Tµ, σ1) = E0p + k0. (4)

Definition 2. Let P be a nonempty compact con-
vex subset of R

np . Define the following sets for all
i = 1, . . . , ne where t denotes fixed t:

X
(i)(t) ≡

{

x(p, Tµ, t) | p ∈ P, Tµ ∈ Mne , t ∈ Ii

}

,

(5)



X
(i) ≡

⋃

t∈Ii

X
(i)(t). (6)

3. THE DECOMPOSITION ALGORITHM

Consider the following dynamic system,

ẋ(p, z̃, t) = A(m)(t)x(p, z̃, t)

+ B(m)(t)p + q(m)(t), (7)

x(p, z̃, σ) = z̃, (8)

for some m ∈ M , where σ < τ, t ∈ T ≡ [σ, τ ],
p ∈ P ⊂ R

np , z̃ ∈ Z̃ ⊆ R
nx . Define the following

set:

X
a(t) ≡

{

x(p, z̃, t) | p ∈ P, z̃ ∈ Z̃, t ∈ T
}

. (9)

Theorem 3. (Singer and Barton, 2003) Given P ≡
[pL,pU ] and Z̃ ≡ [z̃L, z̃U ], the set X

a(t) ≡
[xL(t),xU (t)] for t ∈ T can be calculated point-
wise in time from the following interval equation,

[x](t) = M(t)[w] + n(t), (10)

where w = (p, z̃), w ∈ W ≡ [wL,wU ], wL =
(pL, z̃L), wU = (pU , z̃U ), and M(t) and n(t) are
given by the solution of the following LTV system,

Ṁ(t) = A(m)(t)M(t) + H(m)(t), (11)

ṅ(t) = A(m)(t)n(t) + q(m)(t), (12)

M(σ) = L, (13)

n(σ) = 0, (14)

where H(m)(t) = [B(m)(t) 0], L = [0 I], and I is
the identity matrix of rank nx.

Remark 4. The functional form of the solution of
the LTV system is affine in the parameters w,

x(w, t) = M(t)w + n(t). (15)

The entries in M(t) are clearly the parametric
sensitivities of the dynamic system, ∂x

∂w
(t). Hence,

(11) and (13) are simply the forward sensitivity
equations of the embedded dynamic system in
(7) and (8). We note that for problems where
the number of parameters is much greater than
the state variables, it might be more attractive to
employ adjoint methods to calculate the required
parametric sensitivities at the specified final time,
i.e., calculating M(τ) to construct X

a(τ). How-
ever, it is beyond the scope of this paper to elab-
orate on this issue.

Remark 5. The bounds xL(t) and xU (t) from
(10) are exact in the following sense. For any
i ∈ {1, . . . , nx}, and any t ∈ T , the following
relationship holds,

xi(w
∗, t) = xL

i (t) ≤ xi(w, t) ≤

xU
i (t) = xi(w

†, t), ∀ w ∈ W, (16)

for some w∗,w† ∈ W .

From Remark 5, we know that exact bounds
for x(τ) can be constructed for each subproblem
in the mixed-integer reformulation presented in
(Barton and Lee, 2003) once the bounds for z̃ are
known. This suggests the following decomposition
algorithm for estimating the bounds on Z ∈ Z,
where zi represents the initial conditions for epoch
Ii.

Algorithm 1. (A1).

(1) Initialize i=1.
(2) For m = 1 to nm do:

(a) Integrate the following system from σ1

to τ1, and store M
(m)
1 (τ1) and n

(m)
1 (τ1).

Ṁ
(m)
1 (t) = A(m)(t)M

(m)
1 (t) + B(m)(t), (17)

ṅ
(m)
1 (t) = A(m)(t)n

(m)
1 (t) + q(m)(t), (18)

M
(m)
1 (σ1) = E0, (19)

n
(m)
1 (σ1) = k0. (20)

(b) Calculate and store [x(m)L
(σ2),

x(m)U
(σ2)] from

[x(m)](σ2) =
(

D1M
(m)
1 (τ1) + E1

)

[p]+

D1n
(m)
1 (τ1) + k1. (21)

(3) For j = 1 to nx do:
(a) Calculate and store the jth element of

[zL
i+1, z

U
i+1] from

(zL
i+1)j = min

m∈M
x

(m)
j

L
(σi+1), (22)

(zU
i+1)j = max

m∈M
x

(m)
j

U
(σi+1). (23)

(4) For i = 2 to (ne − 1) do:
(a) For m = 1 to nm do:

(i) Integrate the system (11), (12), (13)
and (14) from σ = σi to τ = τi,

and store M
(m)
i (τi) ← M(τ) and

n
(m)
i (τi) ← n(τ).

(ii) Calculate and store [x(m)L
(σi+1),

x(m)U
(σi+1)] from

[x(m)](σi+1) =
(

DiM
(m)
i (τi) + Li

)

[w]+

Din
(m)
i (τi) + ki. (24)

where wL = (pL, zL
i ), wU = (pU , zU

i ), and Li =
[Ei 0].

(b) Calculate and store [zL
i+1, z

U
i+1] as in Step

(3) above.



Remark 6. The staggered corrector method can
be used for efficient integration of the dynamic
systems (Feehery et al., 1997).

Remark 7. The system (11), (12), (13) and (14)
is independent of the parameters w, hence the
values of M(τ) and n(τ) are also independent of
w. Hence, if the epochs are of equal duration,
i.e., τi − σi is constant for all i, and we have
a linear time invariant hybrid system, step (4ai)
only needs to be executed once for i = 2.

Remark 8. Note that M1 is a nx × np matrix,
while Mi6=1 is a nx × (np + nx) matrix.

Although Theorem 3 guarantees exact bounds
for the system (7) and (8), the bounds obtained
from implementing (A1) have no guarantee of
being exact for Z past the first epoch. This arises
because bounds for different elements of [zL

i , zU
i ],

i > 2, could come from different predecessor
modes Ii−1, and this is illustrated in the example
presented below.

One way to obtain exact bounds is to solve the
bounding equations (see (Lee et al., 2004) for
obtaining the exact bounds for fixed Tµ) for all
possible combinations of Tµ. This method clearly
suffers from exponential complexity in the num-
ber of epochs, and an alternative algorithm for
computing tighter bounds for Z is needed.

4. THE RELAXED LP ALGORITHM

Consider the following problem.

Problem 9. (P1(α,β)).

min
p∈P,Y∈Y b,Z

eT
β zα+1 (25)

s.t.

nm
∑

m=1

ymi = 1, ∀ i = 1, . . . , α, (26)

zi+1 =

nm
∑

m=1

ymi

(

Dixmi(p,Z, τi) + Eip + ki

)

,

∀ i = 1, . . . , α, (27)

z1 = E0p + k0, (28)

where Y b ≡ {0, 1}nm×α ⊂ Y ≡ [0, 1]nm×α, Z ∈
R

nx×(α+1), and the unit vector eβ is the βth col-
umn of the rank nx identity matrix; xmi(p,Z, t)
are given by the solution of the following em-
bedded LTV ODE systems for all m ∈ M , i =
1, . . . , α,

ẋmi(p,Z, t) = A(m)(t)xmi(p,Z, t)+

B(m)(t)p + q(m)(t), ∀ t ∈ Ii, (29)

xmi(p,Z, σi) = zi. (30)

Problem (P1) determines the exact lower bound
for the βth component of x(p, Tµ, σα+1) = zα+1.
We can construct a convex relaxation for (P1)
by treating the bilinear terms in (27) using the
exact linearizations in (Glover, 1975). We can then
formulate the following, equivalent, MILP.

Problem 10. (P2(α,β)).

min
p,Y,Z,V,W,S

eT
β zα+1 (31)

s.t.

nm
∑

m=1

ymi = 1, ∀ i = 1, . . . , α, (32)

zi+1 =

nm
∑

m=1

smi, ∀ i = 1, . . . , α, (33)

z1 = E0p + k0, (34)

vU
mi(ymi − 1) + vmi ≤ smi ≤

vL
mi(ymi − 1) + vmi, ∀ m ∈ M, i = 1, . . . , α,

(35)

vL
miymi ≤ smi ≤ vU

miymi, ∀ m ∈ M, i = 1, . . . , α,

(36)

vm1 =
(

D1M
(m)
1 (τ1) + E1

)

p +

D1n
(m)
1 (τ1) + k1, ∀ m ∈ M, (37)

vmi =
(

DiM
(m)
i (τi) + Li

)

wi +

Din
(m)
i (τi) + ki, ∀ m ∈ M, i = 2, . . . , α, (38)

wi = (p, zi), ∀ i = 2, . . . , α, (39)

w1 = 0, (40)

where Y ∈ Y b ≡ {0, 1}nm×α ⊂ Y ≡ [0, 1]nm×α,
Z ∈ R

nx×(α+1), V ∈ V ⊂ R
nx×nm×α, W ∈

R
(np+nx)×α, S ∈ R

nx×nm×α, and the unit vector
eβ is the βth column of a rank nx identity matrix;

Li = [Ei 0]; M
(m)
1 (τ1) and n

(m)
1 (τ1) are given by

the solution of the system (17), (18), (19) and

(20) from σ1 to τ1 for m ∈ M ; and M
(m)
i (τi) and

n
(m)
i (τi) are given by the solution of the system

(11), (12), (13) and (14) from σ = σi to τ = τi,
for m ∈ M , i = 2, . . . , α.

The required bounds on the auxiliary variables
V (see (35) and (36)) constitute the set V , and
can be determined sequentially for each epoch
(see algorithm below). The variables Z, W, S

are left as free or unrestricted variables. While
it is impractical to solve a family of MILPs (P2)
to obtain the tightest bounds for Z, it is much
cheaper to solve (P2) on the relaxed space Y ∈ Y ,
resulting in solving a family of relaxed LPs to
provide valid (but not exact) bounds for Z. This
constitutes the following algorithm.



Algorithm 2. (A2).

(1) Execute steps (1), (2) and (3) in (A1).
(2) For i = 2 to (ne − 1) do:

(a) For m = 1 to nm do:
(i) Integrate the system (11), (12), (13)

and (14) from σ = σi to τ = τi,

and store M
(m)
i (τi) ← M(τ) and

n
(m)
i (τi) ← n(τ).

(ii) Calculate and store [x̂(m)L
(σi+1),

x̂(m)U
(σi+1)] from

[x̂(m)](σi+1) =
(

DiM
(m)
i (τi) + Li

)

[w]+

Din
(m)
i (τi) + ki. (41)

where wL = (pL, zL
i ), wU =

(pU , zU
i ), and Li = [Ei 0].

(b) For m = 1 to nm do:
(i) For j = 1 to nx do:

(A) Solve (P2(i,j)), with [vλθ] =
[x(λ)](σθ+1), θ = 1, . . . , i − 1,
and [vλi] = [x̂(λ)](σi+1), for all
λ ∈ M , on the relaxed space Y ,
with the following constraint,

ymi = 1, (42)

and store x
(m)
j

L
(σi+1)

← objective.
(B) Repeat step (A) as a max-

imization problem, and store

x
(m)
j

U
(σi+1) ← objective.

(c) For j = 1 to nx do:
(i) Calculate and store the jth element

of [zL
i+1, z

U
i+1] from

(zL
i+1)j = min

m∈M
x

(m)
j

L
(σi+1), (43)

(zU
i+1)j = max

m∈M
x

(m)
j

U
(σi+1). (44)

5. AN ILLUSTRATIVE EXAMPLE

Example 11. Consider an isothermal plug flow
reactor (PFR) operating at steady state, and 3
possible choices of catalyst. The reaction scheme,
initial conditions and associated rate constants are
shown in Fig. 1, where xi represents the molar
concentration of component i (kmol m−3) and kj

represents the rate constant of reaction j (h−1).
The PFR has a uniform cross-sectional area of 1
m2, and a constant volumetric flow rate of 1 m3

h−1. In this example, the independent variable t is
the length, l, of the reactor. Determine the bounds
on the concentration of the reactant and products
at the beginning of each reactor section.

Fig. 1. Chemical reaction scheme and kinetics for
PFR example

Note that the choice of catalyst corresponds to the
choice of the sequence of modes in a linear hybrid
system with 3 modes (each mode corresponds to
the choice of a different catalyst) and ne epochs
(each epoch corresponds to a section of the reac-
tor), with state continuity at the transitions.

Tables 1 and 2 show the bounds obtained for z8

and z15 when ne = 15 when explicit enumeration
(EE) (which obtains the exact bounds), (A1) and
(A2) are used. As can be seen, (A2) produces
tighter bounds than (A1). When physical infor-

Table 1. Bounds for z8 where ne = 15

Species (EE) (A1)
z

L

8
z

U

8
z

L

8
z

U

8

A 0.00 203.18 0.00 203.18
W1 307.30 927.18 78.52 3628.49
I 29.08 493.23 29.08 735.13
W2 1.48 12.68 0.76 29.59
P 2.98 139.37 0.49 373.51

Species (A2) (A2) with (45)
z

L

8
z

U

8
z

L

8
z

U

8

A 0.00 203.18 0.00 203.18

W1 230.54 1734.62 307.30 959.02
I 29.08 493.23 29.08 493.23

W2 1.19 16.16 1.19 16.16
P 1.26 190.19 1.28 180.97

Table 2. Bounds for z15 where ne = 15

Species (EE) (A1)
z

L

15
z

U

15
z

L

15
z

U

15

A 0.00 41.28 0.00 41.28

W1 369.73 927.18 78.52 4365.72
I 11.60 567.77 11.60 815.88

W2 2.43 27.87 1.08 79.06
P 7.34 293.77 0.69 1005.21

Species (A2) (A2) with (45)

z
L

15
z

U

15
z

L

15
z

U

15

A 0.00 41.28 0.00 41.28
W1 230.54 2030.39 321.03 981.59

I 11.60 567.77 11.60 567.77
W2 1.54 44.77 1.54 44.77

P 1.51 544.39 1.53 451.06



mation from the problem can be used, e.g., conser-
vation of molar species, we can add the following
additional constraints to (P2),

nx
∑

j=1

(smi)j = 1000ymi, ∀ m ∈ M, i = 1, . . . , α.

(45)
When this physical insight is employed, it can
be seen that the bounds obtained from (A2)
with (45) produces tighter bounds than using
(A2) alone. The reason why (A2) itself does not
produce bounds which obey this conservation law
is that the linearizations of the bilinear terms in
(27) are only exact on the space Y b, and not on
the space Y . Hence, we have to enforce the law
with (45). Note that there is no way to incorporate
additional constraints within (A1). For further
illustration, the upper bound computed for species
W1 at the beginning of each section when ne = 10
is shown in Table 3.

Table 4 shows the bounds obtained for W1 when
the algorithms are trivially extended to calculate
the bounds at l = 1. It can be seen that the
bounds obtained from (A1) and (A2) deterio-
rate significantly from the exact bounds as ne

increases. When physical insight (45) is employed
in conjunction with (A2), much tighter bounds are
obtained.

All calculations were performed on an AMD 1.2
GHz, 1 GB RAM machine using CPLEX 7.5 as
the LP solver. All LPs were started cold, and
we note that the computational times for (A2)
would improve if the LPs were warm started
where possible. The computation times for the
algorithms are shown in Table 5, from which the
exponential explosion of (EE) is clear.

6. CONCLUSION

The deterministic solution of global dynamic op-
timization problems with LTV hybrid systems
embedded depends on the construction of con-
vex relaxations of the participating functions. The
quality of these relaxations in turn relies on the
computation of tight state bounds. While the ex-
act state bounds can be computed via explicit
enumeration, this approach quickly becomes im-
practical as the number of epochs is increased.
We show through an example that a simple and
efficient decomposition approach based on calcu-
lating the exact state bounds for the subproblems
of a mixed-integer reformulated problem produces
weak bounds which deteriorate as the number of
epochs increases. A novel algorithm is proposed
based on the solution of families of MILPs as
relaxed LPs. This algorithm is able to incorporate
physical insight as additional constraints in the
LPs, and produces significantly tighter bounds
than the decomposition algorithm.

Table 3. Upper bound for W1 (ne = 10)

Section (EE) (A1) (A2) (A2)

with (45)

2 927.18 927.18 927.18 927.18
3 927.18 1586.13 927.18 927.18
4 927.18 2054.45 1161.34 932.50
5 927.18 2387.29 1245.91 945.55
6 927.18 2623.83 1356.05 954.30
7 927.18 2791.95 1401.19 961.80
8 927.18 2911.43 1461.41 967.78
9 927.18 2996.34 1482.13 972.70
10 927.18 3056.69 1516.14 976.73

Table 4. Upper bound for W1 at l = 1

ne (EE) (A1) (A2) (A2)
with (45)

5 927.18 1811.88 1094.46 967.02

10 927.18 3099.58 1523.92 980.04

15 927.18 4404.00 2052.69 983.43

20 927.18 5712.63 2605.73 984.89

Table 5. CPU times (s)

ne (EE) (A1) (A2) (A2)
with (45)

5 0.04 0.04 1.6 2.3
10 0.4 0.04 8.3 12.8
15 135 0.04 27.1 45.7
20 44227 0.04 50.7 86.7
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