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Abstract
This paper presents a globally optimal nonlinear Model Predictive Control (NMPC)
algorithm. Utilizing local techniques on nonlinear nonconvex problems leaves one sus-
ceptible to suboptimal solutions. In complex problems, local solver reliability is difficult
to predict and often highly dependent upon the choice of initial guess. For the purpose of
NMPC, local solvers can cause unexpected closed-loop results or failure of the algorithm.
Stochastic attempts at global optimization of NMPC methods cannot provide rigorous
bounds on the optimality of the resulting solution. Implementation of a global solution
technique (Falk and Soland [1969], Horst and Tuy [1990]), which guarantees global
optimality, restores the integrity of NMPC technology. Due to the combinatorial nature
of nonconvex optimization, real-time considerations must be considered. The proposed
algorithm’s capabilities are demonstrated by the application of the controller on the
benchmark control problem of the isothermal operation of a continuous stirred tank
reactor (CSTR) with Van de Vusse reactions (Kremling and Allgöwer [1993]).
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INTRODUCTION

Given that a dynamic process can be approximated by a
linear model near its nominal operating point, linear Model
Predictive Control (MPC) methods typically provide rea-
sonable control of a system (Morari and Lee [1991, 1997]).
For these methods, a convex optimization problem is solved
online at each time step for the optimal control sequence that
will keep the system within a desired region of operation.
However, in many processing examples, a process may not
exhibit linear dynamics resulting in unstable or poor closed-
loop performance using linear methods. Alternative formu-
lations that consider nonlinear dynamics must be pursued.
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For constrained nonlinear systems, a nonlinear model can
be used in nonlinear Model Predictive Control (NMPC)
formulations (Henson [1998]). The nonlinearity in such for-
mulations, does however, give rise to a more complex opti-
mization problem to be solved online. In general, convexity
of the resulting online optimization problem is lost. The
nonconvex nonlinear program (NLP) formulation leaves one
susceptible to determination of suboptimal solutions.

With a nonlinear discrete-time state-space representation of
a process, the NMPC problem can be formulated at each
sampling time. The controller output will depend upon on-
line solutions of nonconvex optimization problems which
will include nonconvex constraints representing a projection
of the nonlinear model states and measurements into the



future. This work presents a new NMPC application that at-
tempts to find the guaranteed global optimum for problems
posed by general NMPC algorithms.

Deterministic methods for the global solution of nonconvex
problems typically rely on convex relaxations of nonconvex
functions. Numerous methods (Adjiman, Dalliwig, Floudas,
and Neumaier [1998], McCormick [1976], Tawarmalani and
Sahinidis [2000], Gatzke, Tolsma, and Barton [2002]) have
been proposed to carry out such relaxations. For this work,
the nonconvex NLP is reformulated to a convex NLP via
variable transformations. A linearization strategy of (Tawar-
malani and Sahinidis [2000], Gatzke et al. [2002]) is then
implemented to generate a Linear Program (LP). Calculat-
ing the lower-bounds for the problem then relies on solu-
tion of these LP’s, for which various methods are available
(Dantzig [1963], Karmarkar [1984], ILOG [2002]). Note
that nearly any algebraic function can be reformulated for
convexification.

This work expands on previous contributions which con-
sidered a relative small class of nonlinear dynamic systems
(Sriniwas and Arkun [1997]). Once the convex relaxation
is obtained, branch-and-bound (Falk and Soland [1969]) or
branch-and-reduce (Ryoo and Sahinidis [1995]) techniques
can be applied to solve the modified program providing a
guaranteed global optimum (within tolerances). For faster
convergence to this solution, the variable space can be re-
duced using standard techniques such as interval analysis
(Moore [1979]). Although global optimization methods are
combinatorial in nature, the NMPC formulation does have
a relatively restricted variable branching space. In applying
this solution technique to the NMPC, other issues arise re-
garding the algorithms use for real-time applications.

CONTROLLER FORMULATION

Assume that a given process with nu inputs, nx states, and
ny outputs can be represented by a nonlinear discrete-time
state space model:

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))

(1)

where x(k)∈ R
nx is the state vector at sample time k, u∈

R
nu is the vector of inputs, and y∈ R

ny is a vector of the
predicted outputs. Note that f : R

nx × R
nu → R

nx and
g : R

nx × R
nu → R

ny . Without loss of generality, it is
assumed here that g is a linear map.

The NMPC is formulated to choose a sequence of input
moves over the move horizon (m) that minimizes some cost
function. This cost function typically quantifies the differ-
ence between the model predicted evolution of the system
and the desired setpoints over some prediction horizon (p).
A 1-norm objective function may take the form:

Φ =

p
∑

i=1

Γy(i)e(i) +
m−1
∑

j=0

Γu(j)∆u(j) (2)

where e(i) is the absolute value of error predicted for the
(i)th time step into the future. The error (e) is defined and
constrained as:

|ry(i) − y(i)| ≤ e(i) ∀i = 1...p (3)

∆u is a vector defining changes in input movements. Γy(i)
and Γu(j) are weighting factors used to define the relative
importance of each objective function term.

The optimization problem to be solved at each time step
includes constraints. The predicted state and output values
are constrained by the model. The model predicted output
is updated to account for any plant/model mismatch. This
disturbance update is defined as:

d(i) = ym(0) − yp(0) (4)

where ym(0) and yp(0) are the measurement at the current
time and the predicted value of the output at the current
time, respectively. This predicted output is based on state
estimates from an open-loop observer run in parallel to the
process. Constraints on the input movements are imple-
mented as

|u(i − 1) − u(i − 2)| ≤ ∆u(i − 1)

∀i = 1...m (5)

Hard constraints on the actual inputs of the process are
implemented as:

ul ≤ u ≤ uu (6)

The program to be solved online by the NMPC algorithm
has been completely defined and can be re-written in a more
compact form:

min
z

CT z

s.t. A1z ≤ b

hi(z) = 0 ∀i = 1...M (7)

zl ≤ z ≤ zu

where the vector z∈ R
N

is a vector of N unknowns includ-
ing the desired input trajectory, the resulting state, output,
and error projections, as well as the resulting ∆u terms. All
linear inequality constraints are represented by A1z ≤ b.
The M nonlinear constraints that arise from the model and
the objective function are written as hi(z) = 0, where
hi : z → R

M , M = nx ∗ p + 1. Hard constraints on
the inputs are incorporated into the bounds on the unknown
vector (zl and zu).

GLOBAL SOLUTION

Deterministic methods for global optimization depend on
the generation of convex relaxations of the original non-
convex nonlinear problems. Numerous methods have been



proposed for constructing such relaxations. For this work,
a reformulation method (McCormick [1976]) is used which
converts the original factorable nonconvex nonlinear prob-
lem into an equivalent form by the introduction of new
variables and new constraints. The reformulated problem
contains only linear and simple nonlinear terms for which
convex relaxations can be constructed using the convex en-
velopes already known for such simple algebraic functions.
The reformulated Nonconvex NLP is of the form:

min
w,z

CT z

s.t. A1z ≤ b

A2

[

w
z

]

≤ 0 (8)

w = h(w, x)

zl ≤ z ≤ zu

wl ≤ w ≤ wu

where A2[w z]T ≤ 0 defines the new linear constraints
obtained from reformulation, while w = h (w, z) provides
the relationship between the new and original variables.
With Q new variables, w∈ R

Q

and h : w×z → R
Q

. Bounds
on w are determined from the bounds on z. Note that h
consists of simple nonlinear terms relating 2or 3 variables.

Convex relaxations of this problem are then constructed
using DAEPACK (Gatzke et al. [2002], Tolsma and Barton
[2000]), an automated code generation tool. The advantage
of using DAEPACK tool for generating convex relaxations
is it can be applied to legacy models coded in standard
FORTRAN. The convex relaxations can be denoted as:

ȟ(w, z, wl, wu, zl, zu) ≤ w ≤ ĥ(w, z, wl, wu, zl, zu) (9)

where ȟ and ĥ are the convex under and over estimates of
the reformulated problem.

The linearization strategy (Tawarmalani and Sahinidis [2000],
Gatzke et al. [2002]) is then used to generate an LP re-
laxation of the convex NLP created using DAEPACK. The
resulting LP is of the form:

min
w,z

CT z

s.t. A1z ≤ b

A2

[

w
z

]

≤ 0 (10)

A3

[

w
z

]

≤ b3

zl ≤ z ≤ zu

wl ≤ w ≤ wu

where A3[w z]T ≤ b3 expresses the new linear constraints
resulting from the linearization process. This linearization
technique is ideal because it yields an LP for which robust
solvers exist (e.g., ILOG CPLEX 8.0 ILOG [2002] and the
IBM OSL library I. B. M. [1997]).

Upon creation of the linear (convex) underestimates for
the nonconvex nonlinear problem, the branch-and-reduce
method (Ryoo and Sahinidis [1995]) is implemented. This
is an extension of the traditional branch-and-bound method
with bound tightening techniques for accelerating the algo-
rithm’s convergence. Within this branch-and-reduce algo-
rithm, infeasible or suboptimal parts of the feasible region
can be eliminated using range reduction techniques such as
optimality based and feasibility based range reduction tests
(Ryoo and Sahinidis [1995]) or interval analysis techniques
(Moore [1979]). These techniques help to derive tighter
variable bounds for a given partition in the search tree.
Finally, the algorithm terminates when the lower bounds for
all partitions either exceed or are sufficiently close (within
specified tolerances) to the best upper bound. At this point,
a global optimum has been found.

In general, global optimization methods are combinatorial
in nature. However, for this specific application, despite
the NMPC formulation involving hundreds of variables, the
problem has a relatively restricted variable branching space.
Only the mnu true decision variables are branched on dur-
ing the branch and reduce algorithm. The remainder of the
variable bounds are defined by the selection of the optimal
input sequence bounds. This is promising, especially with
regards to the feasibility of the solution approach for real-
time application in the NMPC context.

A modification of standard branch-and-reduce methods was
required in order to allow for rapid global solution. Typ-
ically, a node is selected from the active node list. This
partition is examined for a possible new improved upper
bound to the overall problem by local solution of the cor-
responding nonconvex optimization problem. The node is
then partitioned and lower bounds are derived for the new
partitions based on the convex lower bounding problems. It
was found that it may be necessary for rapid convergence
in this real-time application to search for an upper bound
for each partition using a local search as soon as any new
partition is created. This amounts to a minor reordering of
events in the typical branch-and-bound search algorithm. If
this upper bound local solution search is not performed as
early as possible for the partition, a partition containing the
global solution may be added to the active node list without
a local solution and this node may not be selected from the
list early on in the branch-and-bound search. This is espe-
cially problematic for problems that contain partitions with
highly degenerate lower bounds, as is the case in NMPC
types of problems. The lower bounding solutions may re-
turn an objective of zero for many of the early partitions.
Depending on the implementation, the partition containing
the global solution may not be selected from this active
node list immediately in typical implementations, delaying
the determination of the global solution. Performing a local
searching on every node as soon as the partition is created
helps determine the global solution early on, which also
leads to more rapid convergence as more of the parameter
space can be fathomed using the branch-and-reduce meth-
ods.



CASE STUDY

Consider the benchmark control problem of the isothermal
operation of a two state continuous stirred tank reactor
(CSTR) with Van de Vusse reactions. In this reactor, the Van
de Vusse reactions are:

A → B → C
2A → D

Material balances dictate that the system can then be
described by:

dCa

dt
= (F/V )(Cao − Ca) − k1Ca − k3C

2

a (11)

dCb

dt
= k1Ca − k2Cb − (F/V )Cb (12)

where F is the feed flow rate of A into the reactor, V is
the constant reactor volume, Ca and Cb are the reactant
concentrations in the reactor, and ki are the reaction rate
constants for the three reactions. For this work, let k1 =
50h−1, k2 = 100h−1 , and k3 = 10Lgmol−1 h−1 .
Assume that the volume of the reactor is constant, that the
feed is pure A, and that the nominal concentration of A in
the feed (Cao) is 10 gmol L−1.
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Figure 1. Steady state loci for various feed concentrations
showing steady state operating points in the Local (L)
and Global (G) solution methods.

For this single input single output (SISO) system, the input
(u) is taken as (F/V) , the state vector (x) consists of the
concentrations of A and B in the reactor, and the single
measurement (y) is that of the concentration of B (i.e.,
y = x2). An unmeasured disturbance (d) will be simulated
through changes in Cao. The discrete-time model necessary
for the predictive aspects of this type of control is found
by discretizing the nonlinear state-space model using a
backward difference approximation with a sampling rate of
0.002 hours. It should be noted that this system happens to
exhibit a steady-state input multiplicity. This is depicted in a
plot of the steady-state loci presented in Figure 1. An upper
bound on the input (F/V) is assumed to be at a value of 200
h−1.

The predictive controller is tested for its abilities in both
setpoint tracking and disturbance rejection. The controller is
tuned with m = 1, p = 30, Γy(p) = 100, and Γu = 0. Note
that Γy(k) = 0 ∀k 6= p. By weighting only the pth error
term in the projection, a terminal error penalty is enforced.
Assume that the process is initially operated at u = 181h−1

and y = 1.1 gmol/L. This operating point is indicated
by (1) in Figure 1. At a time of 0.1 hours, the setpoint is
stepped to 1 gmol/L. A series of unmeasured disturbances
are then introduced. At a time of 0.5 hours, the setpoint is
again stepped down, this time under disturbance, to a value
of 0.8 gmol/L.

The closed-loop results for the controller using both the
local solution techniques (MINOS version 5.51) and the
proposed global technique are shown in Figure 2. At the
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Figure 2. Closed-loop results (m=1) with setpoint changes
at 0.1 and 0.5 hours and disturbance loads at 0.2 and
0.35 hours.

time of the first setpoint change, the local solver moves the
system in an improving direction but ends up at a local min-
ima (against the upper bound constraint). This is indicated
by (2L) in Figure 1. The global solver is able to realize
the full setpoint change by finding the global solution (2G).
This example shows that the global NMPC can achieve
superior performance. A sample objective function for the
optimization problem encountered under this circumstance
is provided in Figure 3.

At t = 0.2 hours, the first disturbance hits and both algo-
rithms (using local and global solution techniques) are then
able to track the setpoint under this disturbance. However,
the presence of the input multiplicity allows them to do so at
different operating conditions (denoted 3L and 3G in Figure
1).



Figure 3. Sample objective function at the time of a setpoint
change.

From this, it is obvious that the local solver is moving in
the improving direction toward a minimum that is infeasible
due to the upper bound on the input variable. At t = 0.35
hours, a second disturbance hits that moves the system to an
operating regime in which the setpoint of 1.1 gmol/L can
no longer be achieved. Both the local and global solution
techniques move the system to the optimal operating point
denoted as (4) in Figure 1. Finally, at t = 0.5 hours, the
second setpoint change is implemented. Both algorithms
track this reference change without issue.

For a 0.7 hour simulation with a sampling rate of 0.002
hours, 350 optimization problems are solved online. The re-
quired time for finding the global solution for each problem
is presented in Figure 4. In most cases using Redhat Linux
9.0 on a dual AMD 1900+ MP system, the global solver is
able to guarantee global optimality sufficiently fast for real-
time operation (i.e., the solver returns the global optimum
within 7.2 seconds). However, at a time of 0.35 hours, the
system is under a disturbance large enough that the desired
setpoint can no longer be achieved. At this particular point,
guaranteeing the global solution takes significantly more
time than previous cases and the solver is no longer fast
enough for real-time purposes. This can be attributed to a
flat spot in the objective function (Figure 5). In order to
account for this, the global solver is terminated at the real-
time threshold and the best solution thus far is implemented.
In this case, there is no degradation in the controller’s per-
formance by terminating the solve at the real-time threshold.
However, the guarantee on global optimality is lost. It is
likely that the global solution has indeed been found, how-
ever, some suboptimal regions of the solution space have not
yet been fathomed. A measure of this optimality gap is pro-
vided in Figure 4. Convergence is dictated by bringing the
lower bound within some tolerance of the upperbound. This
plot shows the difference between the two upon termination.

Closed-loop results with a larger move horizon are pre-
sented in Figure 6. Again, the controller is choosing the
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Figure 4. Solution times for the NMPC problems showing
the time for the global solution, the global solution
value, and the worst case lower bound upon termina-
tion for real-time application.

Figure 5. Sample objective function exhibiting a region of
insensitivity to changes in the input.

optimal mnu moves that minimize the objective function.
The controller then implements only the first control move
in that sequence. In an attempt to avoid the scenario in
which the controller chooses not to move the system in this
first calculated move, the objective function was modified
from the previous case. An additional error term from the
prediction horizon was included in the objective function to
account for process dynamics. An input movement penalty
was also implemented. The specific controller tunings were
m = 3, p = 30, Γy(15) = Γy(30) = 100, and Γu = 0.005.
Again note that Γy(k) = 0 ∀k 6= p , p

2
. Velocity con-

straints were also imposed on the system as:

∆u(i) 6 70 ∀i = 1..m (13)

The controller was subjected to the same setpoint tracking
and disturbance rejection tests as in the m = 1 case. Inter-
estingly enough, the NMPC using local solution techniques
was able to track the reference changes and reject the distur-
bances without issue. In particular, when the initial setpoint
change is applied, the controller based on local solution
techniques is able to move the system to the setpoint instead



of moving the input value to the upper bound as before.
On the other hand, the NMPC algorithm using the global
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Figure 6. Closed-loop Results (m=3) with setpoint changes
at 0.1 and 0.5 hours and disturbance loads at 0.2 and
0.35 hours

solution technique did not perform as well. At the time
of this first setpoint transition, the controller chose not to
move. The controller did indeed return the global solution
of the optimization problem at this point, however, the so-
lution dictated that it was not necessary for the controller to
move the system immediately (i.e., in the first move of the
chosen optimal input sequence). For the remainder of the
simulation, the NMPC algorithm using the global solution
technique was able to track the reference and reject the
disturbances. It should be noted that it was able to do so at
different input values than the local method, which is made
possible by the presence of the input multiplicity.

CONCLUSIONS

A globally optimal NMPC algorithm has been proposed.
A deterministic approach is used in finding the guaranteed
global optimum to the nonconvex NLPs associated with the
controller’s operation. The global algorithm was shown to
eliminate the poor performance in a simple CSTR example
resulting from the suboptimal input trajectories supplied by
a controller which uses local solution techniques, provided
that the controller was properly tuned. In doing so, the
globally optimal NMPC algorithm showed promise with
regards to its real-time application. However, backup hybrid
control methods should be considered to handle situations
where the desired solution cannot be obtained in the allotted
time.
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