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Abstract: In this work an approach based on nonlinear dynamics is used for the
integrated design and controller tuning of a CSTR. The approach enables inte-
grated design optimization and robust tuning of a linearizing feedback controller.
The controller setting found by the approach guarantees robust stability of the
process over a large range of set point variations even in the presence of parameter
uncertainty. The method enforces robust stability by introducing lower bounds
on the parametric distance of the operating point to critical boundaries in the
space of process and controller parameters. For stabilization of a large range of
operations, a lower bound on the distance to a nontransversal Hopf bifurcation
has to be considered in this particular case. Copyright c©2004 IFAC

1. INTRODUCTION

Chemical processes generally exhibit nonlinear be-
havior. In process and control design it is of par-
ticular importance to guarantee stable behavior
of the closed-loop process. Ideally, the operating
point should be robust against uncertainties in the
underlying process model. For nonlinear chemical
processes with a frequently changing set point
it is furthermore desirable to guarantee robust
stability over a wide range of operating conditions.

In this paper the issue of robust stability over a
wide range of operating conditions is discussed
for a temperature controlled CSTR (continuously
stirred tank reactor). Control is realized by lin-
earizing feedback control. A bifurcation analysis of
the CSTR performed by Hahn et al. (2003) shows
that model uncertainties may lead to unstable op-
erating points for a particular range of set points.
The analysis also reveals that a lower bound of the
control parameter exists above which the unsta-
ble region vanishes completely. This behavior can
be attributed to a so-called nontransversal Hopf
bifurcation.

In this work a novel design method based on non-
linear dynamics and bifurcation theory is adopted
and used for an integrated process design and con-
troller tuning of a CSTR. The method has been
reported recently by Mönnigmann and Marquardt
(2002a, 2003). It enables the optimization of pro-
cess systems with respect to some profit function
guaranteeing robust stability in the presence of
parametric uncertainty. The method is applicable
to both open and closed-loop systems. In case
of the CSTR considered, stability is ensured by
maintaining a specified lower bound on the dis-
tance between the operating point and the critical
boundary formed by the set of all nontransversal
Hopf points. Results of the approach are presented
for two illustrating design scenarios.

2. PROCESS MODEL AND LINEARIZING
FEEDBACK CONTROLLER

We consider a cooled CSTR with an exothermic
first order reaction A → B. Assuming perfect level
control, the CSTR model consists of the material
and energy balances. It reads



˙cA =
q

V
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(
− E

RT

)
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)
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+
UA

V ρCp
(Tc − T ) .

(1)

The temperature of the cooling fluid Tc is the
manipulated variable and the reactor temperature
T is the measured and controlled variable (Uppal
et al., 1974).

Control is realized by means of linearizing feed-
back including integral action. The control law
reads as (Hahn et al., 2003)

u =
− q

V (Tf − T ) + ∆H
ρCp

k0 exp(− E
RT )cA + UA

V ρCp
T

UA
V ρCp

+
2
ε (Tsp − T ) + 1

ε2

∫ t

0
(Tsp − T )dτ

UA
V ρCp

. (2)

The tuning parameter ε corresponds to the time
constant of the closed loop dynamics, i. e. the
smaller ε the faster is the dynamics of the closed
loop. The integral action 1/ε2

∫ t

0
(Tsp − T )dτ is

included to compensate for potential set point
offsets.

3. BIFURCATION ANALYSIS

In a previous article (Hahn et al., 2003) the closed
loop process model (1), (2) has been analyzed by
parameter continuation and bifurcation theory in
the presence of unmodeled dynamics and para-
metric uncertainties. Unmodeled dynamics have
been introduced into the model by an overdamped
second order process between the controller out-
put u and the manipulated variable Tc according
to

εv ż = −u + z

εvṪc = −Tc + z ,
(3)

where εv represents the unknown time constant
of the unmodeled dynamics. The controller (2)
remains unchanged. The assumed value of εv and
the other process parameters are summarized in
Table 1.

Table 1. Parameters used for analysis

Parameter Value Parameter Value

∆H −5 · 104 J
mol

E
R

8750K

cAf 1 mol
l

k0 7.2 · 1010 1
min

Tf 350K UA 833.3 W
K

V 100L Cp 0.239 J
gK

ρ 1000 g
l

q 100 mol
min

εv 0.05min

The results of the analysis are briefly summarized
here in order to assert the existence of a particu-
lar critical point, a so-called nontransversal Hopf

(NTH) bifurcation, which fully controls the sta-
bility loss in this case. Thus the design approach
presented in Section 4 can solely be based on this
NTH bifurcation.

Continuation of the equilibria from a stable op-
erating point with varying set point tempera-
ture Tsp yields two Hopf bifurcations. The Hopf
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Fig. 1. Curve of steady states for variations in Tsp.
Two Hopf bifurcations (2) divide the curve
into stable states (solid line) and unstable
states (dotted line).

points separate the curve of steady states shown
in Fig. 1 into two stable parts, and an unstable
part between the two stable parts. Introducing the
control parameter ε as a second free parameter,
a curve of Hopf points can be evaluated. This
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Fig. 2. Curve of Hopf points and nontransversal
Hopf point (×) at ε = 0.25min.

curve of Hopf points shown in Fig. 2 separates
the parameter space (ε, Tsp) into a stable and an
unstable region. The distance between the two
Hopf points diminishes with increasing values of
ε. At ε = 0.25min, Tsp = 367K, they merge and
form an extremum with respect to the control
parameter ε.

The bifurcation at the extremum of the Hopf
curve is the already mentioned NTH bifurcation.
The NTH point represents a lower boundary for
the robust tuning of the controller. For values of
ε larger than the extremal value, stability can
be guaranteed for all values of Tsp. Hence the
process is stable over the entire range of operating
conditions of interest.

4. CONTROL SYNTHESIS FOR STABILITY

This section gives a short introduction into the
basic idea of the design method. For a rigorous



derivation of the method the reader is referred
to Mönnigmann and Marquardt (2002a). The
method is applied to the NTH bifurcation which
was found by means of continuation analysis of
the process. The dynamic equations of the process
model (1), the controller (2) and the unmodeled
dynamics (3) are denoted by

ẋ = f(x, α, p) , x(t0) = x0 . (4)

In this notation, x ∈ Rnx are the state variables,
α ∈ Rnα the uncertain process and controller
parameters and p ∈ Rnp the known parameters.

The robustness of the operating point has to be
guaranteed only for the uncertain parameters of
the process model. It is assumed that there are
known upper and lower uncertainty boundaries
±∆α for all α, i. e.

αi ∈
[
α

(0)
i −∆αi, α

(0)
i + ∆αi

]
, i = 1, . . . , nα .

These boundaries are defined e. g. by the accuracy
of measurements. The scaling of the parameters

αi → αi

∆αi
, α

(0)
i → α

(0)
i

∆αi

gives the dimensionless parameters

αi ∈
[
α

(0)
i − 1, α

(0)
i + 1

]
. (5)

Robustness against the uncertainties is achieved
by enforcing a minimal distance between the crit-
ical manifold and the operating point in the space
of uncertain parameters. The minimal distance is
equal to the radius

√
nα of the nα-dimensional ball

enclosing the nα-dimensional cube of sidelength 2
defined by eq. (5). In Fig. 3, a robust operating
point is shown for nα = 2. The ball with a radius
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Fig. 3. Robust operating point α(0) with stability
boundary (thick line). The critical point α(1)

nearest to the operating point is in the di-
rection of the normal vector r (dashed thick
line) at a distance of

√
2 from α(0).

of
√

2 touches the critical boundary tangentially
guaranteeing stability for the nominal operating
point α

(0)
i and for all variations of the parameters

within their range of uncertainty. The minimal
distance l =

√
nα between the critical manifold

and the operating point occurs along the direction

of the normal vector r to the critical manifold.
Thus the constraints for the robustness are given
by

α(0) = α(1) + l
r

‖r‖ (6)

l≥√nα . (7)

A scheme for the derivation of the system of
equations defining r for a generalized critical point
has been derived by Mönnigmann and Marquardt
(2002a). The NTH point that is found in the bi-
furcation analysis of the reactor model is a degen-
erated Hopf point. Thus the normal vector system
of the NTH point can be derived from the normal
vector system of a regular Hopf point. According
to Mönnigmann and Marquardt (2002a) the aug-
mented system for the normal vector r on a Hopf
point is given by

0 = f(x, p, α) (8a)

0 = fxw(1) + ωw(2)

0 = fxw(2) − ωw(1)

0 = w(1)T w(1) + w(2)T w(2) − 1

0 = w(1)T w(2)

(8b)

0 = fT
x v(1) − ωv(2) + γ1w

(1) − γ2w
(2)

0 = fT
x v(2) + ωv(1) + γ1w

(2) + γ2w
(1)

0 = v(1)T w(1) + v(2)T w(2) − 1

0 = v(1)T w(2) − v(2)T w(1)

0 = fT
x u + v(1)T fxxw(1) + v(2)T fxxw(2)

(8c)

0 = r − fT
α u− v(1)T fxαw(1)

− v(2)T fxαw(2) .
(8d)

The system of equations (8) is divided into four
parts. Eqns. (8a) define the steady state of the
process. Eqns. (8b) denote the augmented system
for Hopf bifurcations, with fx being the Jacobian
of the model equations, iω the eigenvalue of the
Jacobian with vanishing real part and w(1) +iw(2)

the corresponding complex eigenvector. Eqns. (8c)
introduce the complex eigenvector v(1) + iv(2) cor-
responding to fT

x and the eigenvalue −iω, and the
auxiliary variables u, γ1 and γ2 for the calculation
of the normal vector r given by eqns. (8d).

It is easy to derive the normal vector system for
the NTH point by means of a geometric argument.
From the curve of Hopf points in Fig. 2 it is
obvious that the component of the normal vector
in direction of Tsp, rTsp , is equal to zero at the
extremum of the curve. The system that defines
the normal vector of the NTH point is therefore
identical to the set of equations (8) except for
the subsystem (8d) that contains rTsp . Without
restrictions it is assumed that Tsp = α1. Then the
eqns. (8d) have to be replaced by



0 = fT
α1

u + v(1)T fxα1w
(1) + v(2)T fxα1w

(2)

0 = r − fT
αi

u− v(1)T fxαi
w(1)

− v(2)T fxαiw
(2) , i = 2, . . . , nα .

(9)

The equations defining the normal vector on the
NTH bifurcation (8a)–(8c), (9) are summarized by

G(x, x̃, p, α, r) = 0, (10)

where x̃ denotes the auxiliary variables (e. g.
w, v, u). Together with the eqns. (6) and (7) that
define the minimal distance between an oper-
ating point (x(0), α(0), p(0)) and a critical point
(x(1), α(1), p(1)), eqns. (10) represent the necessary
constraints that must hold in order to guarantee
robust stability for a large range of operating
conditions. Thus the robust optimum of the pro-
cess model (4) with respect to a cost function φ
can be found by solving the following constrained
nonlinear programm

min
x(0),α(0),p(0)

φ(x(0), α(0), p(0)) (11a)

s. t. 0 = f(x(0), α(0), p(0)) , (11b)

0 = G(x(1), x̃(1), α(1), p(1), r) ,

0 = α(1) − α(0) + l
r

‖r‖ ,

0 ≤ l −√nα .

(11c)

Eqns. (11b) ensure that the optimal operating
point is a steady state of the process model. The
constraints (11c) enforce the minimal distance of
the optimum to the critical points. It is important
to note that certain restrictions (Mönnigmann
and Marquardt, 2003) must hold for the system
(4) in order to apply the normal vector approach.
In particular it has to be assumed that variations
of the uncertain parameters are slow compared to
the time scales of the process, i. e. all α may only
vary quasistatically with respect to the system
dynamics.

5. ILLUSTRATIVE EXAMPLES

In this section the theory described above will
be illustrated by two exemplary integrated design
and control problems associated with the CSTR.
In the first example, the design problem is the
maximization of the reactor yield. The control
problem consists of finding a robust controller set-
ting that not only stabilizes the optimal operating
point but furthermore allows set point variations
without loss of stability. The robustness against
set point variations is crucial for a reactor with
frequently varying demands on the product qual-
ity. The design problem in the second example ad-
dresses the minimization of the investment costs
attributed to the heat transfer area for a fixed rate
of production. The control design problem is again
to find a robust controller setting for the optimal

reactor design that allows for setpoint variations
without loss of stability. The constrained opti-
mization problem (11) is used for the solution of
both integrated problems. From a technical point
of view, (11) guarantees the robust stability for all
values of the parameter Tsp by ensuring a specified
distance to the manifold of NTH bifurcations. For
both examples, results of the optimization with-
out the robustness constraints (11c) are included
for reference.

5.1 Optimization of the reactor yield

Here the CSTR is optimized with respect to
the amount of B produced per unit time. The
production of B is equivalent to the amount of
converted A. The function to be maximized is
therefore chosen to be

φ = q (cAf − cA) (12)

with a constant concentration cAf = 1.0mol/l of
the feed. The objective function may be increased
by increasing the feed rate q or decreasing cA.
A decrease of cA can be achieved by setting the
reactor temperature T = Tsp to higher values. To
ensure the thermal stability of the product it is
therefore necessary to impose an upper bound on
Tsp. Assuming that water is used as the cooling
medium a lower bound has to be set on Tc. For
the optimization problem these bounds represent
additional constraints, e. g.

Tmax ≤ 400K ,

Tc,min ≥ 300K .
(13)

The time constant εv of the unmodeled dynamics
and the feed rate q are assumed to be the uncer-
tain parameters (nα = 2). The uncertainties are
set to

∆q = 10mol/min ,

∆εv = 0.01min ,
(14)

which correspond to 10% and 20% of the nom-
inal values given in Table 1, respectively. While
the nominal value of q may vary, the estimated
nominal value of εv = 0.05min is assumed to be
constant. Tsp and the controller parameter ε are
known parameters (np = 2) of the optimization
problem (11).

For reference, the results for the optimization
without any normal vector constraints are shown
in Fig. 4. For this optimization run the control
parameter ε is fixed at the value ε = 0.25 min
corresponding to the NTH bifurcation found in
the analysis given in Section 3. The figure shows
that the operating point is on the wrong side of the
robustness boundary. The optimal operating point
itself is stable, but continuation analysis reveals
that variations of Tsp result in unstable operating
points between 352.0K < Tsp < 388.3K.
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Fig. 4. Left: Nonrobust optimum (4) at maximum
yield. Right: Continuation analysis reveals
two Hopf bifurcations (2) and an unstable
region (dotted).

To achieve the required stability over the entire
range of Tsp an optimization including the normal
vector constraints (11c) has to be carried out.
Fig. 5 illustrates the obtained result. The robust-
ness circle with the radius r =

√
nα =

√
2 around

the optimal operating point touches the critical
boundary. Variations of Tsp confirm that the set-
ting of the control parameter found, ε = 2.28min,
guarantees stability for the entire region of oper-
ating conditions.
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Fig. 5. Left: Robust optimum (×) at maximum
reactor yield. Right: Continuation analysis
shows stability for all Tsp.

The values of the objective function are the same
for both optimizations. The two operating points
only differ in the value of the controller parameter
ε. The cost function (12) obviously defines the
reactor parameters and the normal vector con-
straints (11c) define the controller parameter in
the optimization problem. Comparing both stabil-
ity boundaries it becomes obvious that the higher
value of ε enlarges the region of stable parameter
settings. Loosely speaking the normal vector con-
straints shift the critical boundary by increasing
ε until the optimal operating point is found on
the robust side of the boundary. The constraints
guarantee that no NTH bifurcation occurs for
any variations of the uncertain parameters within
their specified uncertainties. The drawback for
the stabilization of the entire range of operating
points is the conservative setting of ε. If only
robust stabilization of the optimal set point is
required much tighter control becomes feasible.

The optimal robust parameter settings are sum-
marized in Table 2. The temperature constraints
(13) are both active at the optimum.

Table 2. Robust optimal operating point

Parameter Value Parameter Value

q 142.4 l
min

ε 2.28min

Tc 300.0K Tsp = T 400.0K

cA 0.06 mol
l

φ 134.0 mol
min

5.2 Minimization of the heat transfer area

The aim of the optimization is to find an optimal
reactor design that produces a specified amount
of B with minimized investment cost and a con-
troller setting that allows for variations of the set
point temperature without loss of stability. The
objective function is given by the investment cost
attributed to the heat transfer area. According to
Douglas (1990) they can be estimated to be

φ = 2285A0.65[$] , (15)

with A in m2. Here a constant heat transfer coef-
ficient U = 100 W/m2K is assumed. The value of
(15) is only influenced by UA which becomes an
additional parameter for the optimization prob-
lem in this example. However, it is not possible
to set UA to arbitrary small values since the con-
straints on the reactor temperature and cooling
water temperature (13) apply to this optimization
problem as well. The desired production rate of B
is arbitrarily set to be

q(cAf − cA) = 85 mol/min . (16)

UA is assumed to be uncertain. The uncertainty
is set to

∆UA = 83.3 W/K , (17)

which corresponds to 10% of the nominal value
given in Table 1. Together with the uncertainties
∆q and ∆εv specified in eq. (14), there are three
uncertain parameters (nα = 3) and two known
parameters (ε and Tsp, np = 2) in this optimiza-
tion problem. The desired production rate (16)
constitutes an additional equality constraint.

(a) (b)
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Fig. 6. (a) Continuation of the non robust opti-
mum (4) with two Hopf bifurcations (2) and
an unstable region (dotted). (b) Continuation
of the robust optimum (×) yields set of stable
operating points.

For reference, results without normal vector con-
straints are shown in Fig. 6a. The controller pa-
rameter is set to ε = 0.25min. As in the previous



example this optimization results in a stable oper-
ating point. Variations of Tsp, however, again give
rise to Hopf bifurcations and a region of unstable
operating points at 360.5K < Tsp < 371.3K.

The required stability for all values of Tsp at the
optimal reactor design is obtained by including
the normal vector constraints in the optimization
problem.
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Fig. 7. Robust optimization with cost function
(15); the operating point is surrounded by its
robustness sphere; the critical manifold is in-
dicated by thick lines; the optimal operation
point, the robustness sphere and the critical
manifold are projected onto the planes (εv, q)
and (εv, UA).

Fig. 7 shows the robust operating point with the
controller setting of ε = 0.63min in relation to
the critical boundary spanned by the uncertain
parameters εv, q and UA. The robustness sphere
with the radius r =

√
3 around the operat-

ing point touches the critical manifold. Thus it
is guaranteed that no NTH bifurcation occurs
within the specified range of uncertainties. As in
the previous example, the value of the objective
function (15) corresponds to the value obtained
without the robustness constraints. Robust stabil-
ity is achieved by increasing ε. The continuation
analysis in Fig. 6b shows the desired stability over
the entire range of Tsp. The results of the opti-
mized operating point are summarized in Table
3. The determined reactor design admits a faster
control in comparison with the control of the ro-
bust maximum of the reactor yield. Relaxing the
robustness requirements to solely stabilizing the
optimal operating point, however, would admit
even tighter control.

Table 3. Robust optimal operating point

Parameter Value Parameter Value

q 88.3 l
min

cA 0.04 mol
l

q(cAf − cA) 85 mol
min

ε 0.63min

Tsp = T 400.0K Tc 300.0K

UA 532.5 W
K

φ 6776 $

6. CONCLUSIONS

In this paper, an integrated method of robust
design optimization and controller tuning for a
temperature controlled CSTR is presented. The
controller is realized by means of linearizing feed-
back. The integrated method guarantees stability
of the optimal operating point for variations of
uncertain parameters within specified bounds and
for all variations of the set point. Robust stability
is achieved by constraints that ensure a specified
distance in the direction of the normal vector from
the operating point to a critical boundary of NTH
bifurcations. The critical boundary separates the
parameter space into one region where set point
variations always result in a stable operating point
and another region where variations of the set
point give rise to instabilities. For an extension
of the method to constraints that guarantee not
only stability but also a specified performance
of the closed loop system the reader is referred
to Mönnigmann and Marquardt (2002b). In this
work critical manifolds of steady states are consid-
ered at which the real part of the leading eigen-
value attains a user specified value σ0 < 0.

Clearly the presented integrated design method
is neither restricted to the simple examples pre-
sented nor to linearizing feedback control. It can
be applied to any process that exhibits a NTH
bifurcation controlling the stability loss, if sta-
bility has to be guaranteed in the presence of
uncertainties even in a large region of operating
conditions.

REFERENCES

Douglas, J.M. (1988). Conceptual Design of
Chemical Processes. 1994. 2nd ed.. McGraw-
Hill. New York.
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