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A b s t r a c t  

In this paper, the generic problem of the development of 
a population balance model for those biological systems 
involving cellular processes is discussed. Such models 
are of interest for bioreactor optimisation and control, 
as well as for different biomedical problems including the 
study of cancer. The generic model and its features are 
presented, serving partly to consolidate the studies that 
have been reported in the literature already. The major 
challenges and issues with this problem are highlighted. 
One of the challenges is with respect to the solution tech- 
nique for these complex models, which issue is addressed 
here. The algorithm proposed for solving these complex 
models is based on a hierarchical two-tier solution strat- 
egy that has been proposed previously (Immanuel and 
Doyle, III, Chem. Eng. Sci., 2003). The two-tier strat- 
egy involves the calculation of the rates of sub-processes 
that contribute to the population dynamics in the first 
tier, with the population itself being updated in the sec- 
ond tier. This in turn enables performing a major por- 
tion of the calculations off-line (once at the start of the 
simulation), thereby achieving a major reduction in the 
computational load. The algorithm is implemented on a 
six-dimensional population balance bioreactor model. 

I n t r o d u c t i o n  

The interest in the development of detailed mathe- 
matical models for biological processes is undergoing 
a tremendous boost in recent years among the Chem- 
ical Engineers. This is because of the various purposes 
that a mathematical model of biological processes can 
serve [16]. The primary purpose is the growing interest 
in a biochemical route to the manufacture of commodity 
chemicals, pharmaceuticals, food products, and agricul- 
tural products. Apart from the bioreactors, the models 
will be very versatile tools for the analysis of biomedical 
problems and in therapeutical studies. Very detailed 
studies on the various individual aspects of biological 
systems is carried out by the biologists, biochemists, and 

the researchers in the medical fields. These individual 
aspects need to be consolidated to form a comprehensive 
picture, to study the effect of these individual mecha- 
nisms on the overall process, and hence to bring these 
individual studies to further fruition. A comprehensive 
model will provide a framework to do this, and will in 
most cases be the only tool available to explain the var- 
ious intricate experimental observations. The mathe- 
matical model can aid in the study of the underlying 
processes themselves, by suggesting appropriate and ef- 
fective experimentation. The net result is a symbiotic 
improvement in the process understanding and model 
development. The resultant model will be in a form 
suitable for the different end applications, be it to per- 
form design, optimisation and control of bioreactors or 
for therapeutical studies, as the case may be. 

The focus of this study is on biological systems that in- 
volve cellular processes. The most common and simple 
methodology for the mathematical modelling of such 
systems is based on the so-called unstructured mod- 
els, which do not distinguish the individual cells in the 
aqueous medium. However, the complexity of the bio- 
processes warrents the introduction of structure into 
the model, to obtain a more rigorous representation 
of the processes. A more rigorous modelling approach 
will account for the heterogenons nature of the reaction 
medium, the non-uniformity of the cell populations with 
respect to their mass and internal metabolites, the cell 
cycles (the processes of growth, division, death, and in 
certain cases even recombination), and the interaction 
of the cell cycle with the environment. This can be nat- 
nraUy done employing the population balance framework. 

Although the advantages of pursuing a population bal- 
ance approach for bioreactor modelling has been recog- 
nised since the 1960's by Fredrickson and Tsnchiya [5], 
the actual application of these models in reactor opti- 
misation and control has not been pursued until much 
recently [17, 10]. This is partly attributed to a lack 



of sufficient depth of understanding of the underlying 

mechanisms. The complexity of the metabolic pathway, 

and hence of the mathematical model, has also been 

a major deterent in this problem. Although these de- 

terents have been sufficiently overcome in recent years, 

the control studies reported are based on total-mass- 

structured cell population balance models, with a single 

internal coordinate. However, the complexity of the pro- 

cess, with the large number of metabolites and reactions 

involved, warrants and even necessitates the introduc- 

tion of further structure into the models. The cell cycle 

phases, and the growth and division rates, are depen- 

dent not only on the total mass of the cells, but more 

so on the mass of the different metabolites within the 

cells. Thus, there is a need to develop higher dimen- 

sional population balance models, by accounting for the 

distribution of different properties (and not just the to- 

tal cell mass) among the cell populations. 

On a different level of time scales and to a certain ex- 
tent the model complexity, the modelling of cell cycles 
assumes importance for characterising the physiological 
conditions and understanding several medical problems. 
For instance, the cells that constitute the various or- 

gans in the human body are involved in the processes of 

growth, division and death, and their interaction with 

the surroundings and the other cells. Alterations to the 

cell cycles, due to perturbations either internally within 

the cells or externally in the surrounding, lead to can- 

cerous growth of the cells and to tumours. Even though 

modelling studies on cancer have appeared in the litera- 

ture (such as the Marchuk's Model for general immune 

response), these studies do not account for the cell cycle 

phases. Instead, they mainly account for the interaction 

between normal cells, cancer cells and the antigens, re- 

sulting in relatively simple (three state) models (similar 
in structure to the first models on HIV [12]). Since the 

major disease factor lies in the cell cycle phase, the best 

model for cancer has to account for the cell cycles. Thus, 

again, a population balance model becomes the most ap- 

propriate modelling tool for cancer. In a similar vein, 

population balance models of microbial populations also 

assume importance for the study of diseases caused by 
bacterial populations, which co-exist and interact with 

each other as well as with bacteriophages. In this case 

again, unlike in the case of the relatively short-spanned 

bioreactors, the interactions between mutation and re- 

combination (crossover) will assume a critical factor. 

Measurement of the cell populations and their distribu- 

tion will be a critical factor in model development, to en- 
sure that the right level of detail is present in the model 

to provide it with the predictive capabilities. Flow cy- 

tometry is a boon for the development of cell population 
balance models. Although it stems from the age-old con- 

cept of gram-staining of the cells, it has been consider- 

ably developed over the years to be amenable to current 

requirements [15]. Flow cytometers can also be adapted 

for on-line measurement of cell populations, with sample 

times of 18 minutes being reported [1]. These develop- 

ments are very positive aspects for model development. 

The instrument can be used to monitor the distribution 

of select individual metabilites, or to monitor the total 

mass distribution of the population. 

In this paper is presented a general, yet realistic formula- 

tion of the population balance-based models for the dif- 

ferent biological problems highlighted above. Further, 

the major challenges in implementing this approach are 

identified. Preliminary results that overcome some of 

these challenges are presented, particularly with respect 

to the numerical solution of bioreactor models. 

O p p o r t u n i t i e s  

Cell  cycle a n d  r e g u l a t i o n  

As indicated in the introduction, a realistic model of 

the cellular biological processes has to account for the 

cell cycles in the heterogeneous medium. The cells in 

the population undergo a cycle of changes through their 

life time. The individual cells synthesise metabolites 

including proteins, RNA and DNA, and thereby grow 

in size. Upon the duplication of the genetic carriers 

- the DNAs, the cells undergo cell division into two 

usually identical daughter cells, contributing new and 

younger members to the population. The cell cycle is 

divided into two reg imes-  the interphase and the mito- 

sis phase (M-phase). The interphase is that regime of 

the cell cycle that characterises the synthesis of metabo- 

lites, cell growth and DNA replication. The M-phase 

characterises the cell division. In the case of the Eu- 

karyotes, the interphase is further divided into the G1 

phase, the S phase, and the G2 phase. The G1 phase 
accounts for the synthesis of the metabolites required 

for DNA replication, the S phase accounts for DNA 

synthesis, the G2 phase accounts for the gap between 

DNA synthesis and cell division that serves to ensure 

proper replication of the DNA. There could also be a GO 

phase, which represents an additional gap during which 

the cells are at rest. The cell division (the M phase) is 

itself divided into several phases (Prophase, Metaphase, 

Anaphase and Telophase) that represent the processes 

of separation of the DNA, cytokinesis and formation of 

the cell membrane dividing the daughter cells. The cells 

usually cease to divide (senescent state) after a certain 

number of generations of reproduction. Cell senescence 
usually sets in after 60-80 generations. The cells also 



undergo apoptosis and necrosis (cell death). The dura- 
tion of the cell cycle depends upon the organism, and 
in the human body, the cell cycle duration also depends 
upon the organs that  the cells constitute. 

The G1 and S phases are characterised by the complex 
metabolic reaction scheme that  occurs within the cells. 
The amount of information available on the various 
pathways (glycolysis pathway, TCA cycle pathway etc.) 
far exceeds the amount that  can be modelled reason- 
ably with the available computational resources. Thus, 
in developing models for bioreactors and for biomedical 
applications, the metabolic pathways that  are the most 
relevant will need to be adopted. Techniques such as 
the cybernetic modelling concepts [8] can be exploited 
to account for both the simplification that  is introduced 
into the metabolic pathways, and more importantly to 
account for the selectivity and regulations that  are in- 
herent within the cells. 

The passage from one phase to the other is dictated 
by several regulatory mechanisms (check points), some 
of which are triggered by external impulses. The most 
important regulation is the RAS signalling, which regu- 
lates growth and proliferation as well as survival of the 
cell populations. The RAS signalling operates through 
several pathways such as the RAF pathway and the 
Mitogen-Activated Protein Kinase (MAPK) pathway, 
which determine the transition of the cells into the syn- 
thesis phase of the cell cycle [3]. The protein p53, a 
type of cyclin activated kinase inhibitor, is crucial to 
maintain normal cell cycles by supressing cell prolifer- 
ation and regulating cell growth. Mutants of p53 and 
the perturbations that  appear in these regulatory mech- 
anisms are the major reasons behind the occurence of 
cancer and malignancy, as has been borne out by sev- 
eral studies [11, 13]. In addition, the cell senescence 
is contingent on telomere shortening (telomeres being 
precursors to replicated DNAs), which is perturbed by 
the expression of the enzyme telomerase that  leads to 
' immortality'  of cells (return from the senescent state 
back to a proliferative state) and hence to cancer [11]. 
Similarly, cell apoptosis is regulated by the transforming 
growth factor TGF-/3 [14]. Population balance provides 
a natural framework to model these various mechanisms. 

M o d e l  formulat ion  
The general population balance model as applicable to 
biological systems is given in Equation (1). In this equa- 
tion, F~(x,  t) accounts for the population density of 
the cells at generation n (after n divisions), x accounts 
for the internal coordinates (the concentration of the 
metabolites within the cells), and N is the number of 
internal coordinates considered in the problem. ~ ac- 

counts for the rate of change of the metabolites due to 
kinetic pathways within the cells. ~dn/vl(X, t) accounts 
for the formation of cells in generation n by cell division 

in the previous generation n -  1. Likewise, ~ i v ( x ,  t) 
accounts for the depletion of cells in the current gen- 

eration n due to cell division. ~ i v ( x ,  t) - 0 for n 
beyond the threshold generation for cell senescence to 
occur. In bioreactor models, cell senescence is usually 
not of significance as the residence time of the cells is 
much shorter. But this assumes importance for can- 

cer modelling. ~}~death(X, t) accounts for cell death and 
~ceU-ceU (x, t) can be employed to account for cell-cell 
interactions such as the recombination aspects in bacte- 
rial populations. 

N 0 ( F n ( x  t )dxl  n-1  otOFn(x't) q-Ei=l-~x~ ' -d-t-) -- ~div (x , t )  

- - ~ i v ( X ,  t) -- ~death(X, t) q- ~cell-cell(X, t) (1) 

Employing the assumption of a deterministic process, 
the various phases are mutually exclusive in terms of 
the concentration of the cell metabolites, as clearly ex- 
plained in a recent article [4]. Based on this argument, 
one need not introduce further distinction into the pop- 
ulation to distinguish among the various phases of the 
cells. However, one might need different growth kernels 
(d~_¢~) for the different cell cycle phases. In the above 
cited paper, in the final phase (M-phase), the age of the 
cells in this phase is also taken into account in order to 
account for the variable time delay associated with the 
processes of cytokinesis and the development of the cell 
partition before the cell division. In the model presented 
in equation (1), this distinction is not made to keep the 
model simple, and to maintain the right level of detail. 

On the other hand, one also needs to model the ef- 
fect of the environment on the cell cycle phases, such 
as through regulatory mechanisms. As indicated pre- 
viously, the modelling of the regulation will be critical 
mainly for medical problems. In modelling the regula- 
tory processes, one might adopt the models for these 
mechanisms that  have been published in the literature. 
For example, the MAPK pathway has been recently 
modelled [2]. While a strategy similar to the one pro- 
posed in that  study can be employed in our population 
balance formulation, a strategy based on the extension 
of the cybernetic approach will also be a very viable al- 
ternative (both in terms of simplifying the model and in 
terms of avoiding difficulties in representing the regula- 
tory aspects of the pathway). 
M o d e l l i n g  for B ioreactor  control  
Due to the relatively small life time of the cells within 
the reactors, cell senescence aspects will not be impor- 
tant. Thus, the model presented above can be simplified 



substantially by not distinguish between the different 

generations of the cells. Also, the cell-cell interaction 

effects can be ignored. In effect, the PBE reduces to the 

form shown in Equation (2). 

o F(x ,  t) + o (F(x,  t) x, O~ 1=1 ~ -d-t-) -- ~div(X,  t)  

--~div (X, t)  -- ~}~death (X, t)  (2) 

The cell division terms are modelled as in Equations (3) 

and (4). The extracellular metabolites are modelled as 

in Equation (5), accounting for the diffusion out of the 

cells and any deactivation in the aqueous medium. 

(x, t) - r ( x ) F ( x ,  t) (3) 

fxX: . . . .  fx? . . . .  fx? . . . .  fxX: . . . .  fx? . . . .  

Lx: . . . .  F ( x ) F ( x ,  t ) d x l  d x 2 d x 3 d x 4 d x 5 d x  6 (4) 

dxe~ _ 
d~ - -LIL2L3L4L5L6 ~(x-xex) 
F(x,  t )dxl  dx2dxadx4dxsdx6 - k ~ x ~  (5) 

Modell ing for Cancer Studies 
A more detailed population balance model becomes im- 

portant for this application, in view of the larger 'resi- 

dence time' of the process. In particular, the model will 

need a detailed account of the regulatory mechanisms 

(check points). One may need to account for a larger 

number of internal metabolites in this case, and more- 

over, the generation number of the cell populations will 

need to be monitored. 

The model developed will aid in the study of the sensi- 

tivity of the different regulatory mechanisms, and hence 

to identify the most sensitive mechanism that one should 

target for treatment. For example, the effect that the 

RAS signalling and the other individual pathway have 

on the overall process of tumour growth can be analysed 

using the mathematical model (even if only on a qual- 

itative level). These sensitivity informations can then 

be used to direct further experimentation and research 

along the most promising path for therapeutic studies. 

For therapeutic studies, the antibody dynamics and its 

interaction with both the normal cells and the cancerous 

cells will need to be incorporated into the model. 

Challenges 
The challenges in the development of population bal- 

ance models for biological systems can be categorised 

into three areas. The first category pertains to the com- 

plexity of the process, and the challenges in identifying 

an appropriate level of detail for the various applica- 
tions at hand and a suitable mathematical formulation 

for each mechanism. The knowledge base with regard 

to biological processes has reached such a stage that 

one has to be eclectic in choosing the aspects and details 

that one needs to incorporate into the model. This issue 

was illustrated briefly above in selecting the models for 

bioreactors. In this case, there is much less need to in- 

corporate the regulatory mechanisms. Also, the portion 

of the intracellular metabolic pathway that is relevant to 

the process can be focussed upon. On the other hand, 
for biomedical applications, one needs to have a more 

comprehensive metabolic pathway, and also the regula- 

tory aspects assume great importance. Extensions of 

the cybernetic approach can be employed at different 

stages of the model. 

The second category pertains to the identification of 

the appropriate kernels for the various portions of the 

model. While the development of the growth kernels 

might be an easy task, the same cannot be said about 

the division kernel. Also, the partition functions for 

non-symmetric divisions might be another challenge to 

obtain. However, the ability to measure and monitor 

individual portions of the process through flow cytom- 

etry provides great promise for the identification of the 

appropriate kernels. 

The third category pertains to the solution of the rood- 

els. The need is a generic yet realistic and emcient nu- 

merical solution technique to solve these complex mod- 

els. Such a technique will segregate the effect of solution 

capabilities on the level of details in the models, and en- 

able attaining the full potential in the model that reflects 

current process knowledge. 

Representative model  simulation 

In this paper, a representative model for a bioreactor 

is presented. The yeast system described in Henson et 

al. [6] is chosen as the model system of study. A six- 

dimensional population balance model is developed, as 

recommended there. The six internal coordinates chosen 

are the intra-cellular concentrations of glucose; glycer- 

aldehyde 6-phosphate; 1,3 biphospho glycerate; pyru- 

vate; NADH; and ATP. The intra-cellular metabolic 

pathways and the associated reaction kinetics are rood- 

elled employing a variation of the Monod kinetics [6]. 

These kinetics will form the basis for modelling the cell 

growth phenomenon in Equations (1) and (2). The nu- 

trient glucose is a continuous input to the cells, while 

pyruvate is a metabolite produced by the cells that  is 

excreted to the aqueous medium (with mass transfer co- 
emcient ~). 

Applying traditional solution techniques such as the dis- 
cretisation methods or the methods of weighted resid- 



uals results in a large system of equations, even with 

a modest choice of discretisation parameters. This as- 

pect, combined with the stiffness of the model equations, 

leads to very large computational requirements. The 

largest system for which a method of weighted residu- 

als has been applied is a 3-dimensional population bal- 

ance model [9], with much simplified kinetics. For a six- 

dimensional system, Henson et al. [6] report a constant- 

N Monte Carlo-like solution method. This particular 

method is based on the superposition of multiple single 

cell models rather than on the solution of the popula- 

tion balance equation itself. Although this is a viable 

starting point, these techniques do not allow a rigor- 

ous characterisation of the population dynamics. In the 
present study, a realistic, feasible and efficient solution 
technique is employed for the population balance models. 
The hierarchical two-tier technique that was developed 

for single-dimensional models [7] is extended to this 6-D 

case. In this technique, the population balance equation 

is explicitly formulated in terms of the individual phe- 

nomena of the nucleation, growth, division and death. 

As indicated earlier, the continuous growth (or shrink- 

age) process is modelled using partial differentials, while 

the discrete processes that include the aggregation (co- 

agulation) and breakage processes are modelled in terms 

of complex integrals. The evaluation of these integrals 

require very high computational loads by themselves. In 

the hierarchical two-tier solution technique, the individ- 

ual rates of the nucleation, growth and death phenom- 

ena are computed in the first tier of the algorithm, and 

the population is updated in the second tier. To reduce 

the high computational demand of modelling the aggre- 

gation/breakage integrals, an off-line solution strategy 
is employed. In this strategy, the complex quadratures 

are solved semi-analytically in terms of the (unknown) 

population densities a priori, thereby substantially re- 

ducing the on-line computational load. 

For bioreactor problems, cell aggregation is not impor- 

tant. However, one must account for cell division. The 

derivation of the off-line semi-analytical solutions for the 
integral terms representing the cell division phenomenon 
is relatively easier than the corresponding aggregation 

integral. Cell division is assumed to be connected with 

the concentration of glucose within the cell, with the 

cells dividing upon reaching a threshold glucose concen- 

tration. Also, the division is assumed to be binary, with 

a uniform split of each of the metabolites. 

The algorithm is based on a finite-volume discretisa- 

tion of the distribution domains. The particle popula- 
tion is assumed to be uniform within each of the finite 

volumes. The growth phenomenon is modelled based 
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F i g u r e  1: Simulated evolution of the cell populations, 
depicted with respect to two of the inter- 
nal co-ordinates. The internal coordinates 
are the intra-cellular concentrations of glucose 
and nicotinamide adenide dinucleotide hydrogen 
(NADH). As the time progresses, a synchronisa- 
tion of the population is observed. 



on the metabolic reaction rates at the six-dimensional 

boundaries of the finite volumes. As explained earlier, 

the 6-dimensional integrals that  characterise cell divi- 

sion are reduced to simpler multiplication and addition 

of terms, which while being accurate as analytical so- 

lutions, substantially reduces the on-line computational 

load. Space constraints prevent the inclusion of the de- 

tailed algorithm and the model equations here, but will 

be elaborated elsewhere. 

Since a rigorous population balance formulation is 

adopted here, the modelling of the interaction of the 

cells with the aqueous medium can be done in a straight- 

forward manner, without having to resort to unneces- 

sary assumptions and simplifications that  would be nec- 

essary in the statistical methods. In the later stages 

of the project, the few macroscopic parameters in the 

model will be determined by fitting the simulation re- 

sults to experimental data from flow cytometry. Pre- 

liminary simulation results are presented in Figures 1. 

This indicates the synchronisation of the cell popula- 

tions, which effect has been observed in other studies [6]. 

Parametric sensitivity studies also indicate an ability to 

capture complex dynamics such as the oscillatory and 

limit cycle behaviour that  have been observed experi- 

mentally. 

C o n c l u s i o n  

A general and realistic framework was presented for 

the modelling of cellular processes in biological systems, 

employing the population balance ideas. The model 

will have ramifications for biochemical studies (design, 

optimisation and control of bioreactors) as well as for 

biomedical studies (in particular, to understand the oc- 

curence of cancer and to identify the most sensitive 

regimes of the cellular processes to target for therapeu- 

tic investigation). The major challenges that  confront 

model development were highlighted. One of these is 

the challenge in the solution of these complex models in 

an efficient manner. It is imperative to have an efficient 

solution technique, so as to remove the computational 

burden from being a determining factor for the model 

features and details. A hierarchical solution strategy is 

presented, which enables performing a major portion of 

the computations a priori. Despite being based on a rig- 

orous six-dimensional population balance formulation, 

the technique gives solution times of about an hour for 

a 1 hour run. This will be adequate for design and opti- 

misation of bioreactors, and also for analysis of medical 

problems. For on-line control purposes, one can resort 

to simpler, one-dimensional population balance models 

or the faster cell ensemble solution technique [6] 
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