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Abstract: The modeling and multivariable control of the multi-zone chemical mechanical 
polishing (CMP) is studied in this work. For a three-zone CMP, the copper thickness 
across the radial position is measured with an in -situ sensor and then the m easurements
are converted to 60 data points across the radial position. In the process control notation, 
these are the controlled variables and the manipulated variables are the three pressures 
applied to each zone. Therefore, this is a 60x3 non-square multivariable control problem. 
Thus, a 60x3 steady -state gain matrix is obtained followed by finding dynamic elements 
according to the gas holdup in each chamber. As a result of the non-square system, it is 
not possible to keep all 60 outputs at their set points using only 3 inputs. The singular 
value decomposition (SVD) is used to design a non -square feedback controller. The 
proposed control system is test on incoming wafers with different surface profiles. 
Results show that achievable performance can be maintained using the proposed SVD 
controller. Copyright © 2004 IFAC
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 1. INTRODUCTION

 
In Cu CMP, the copper is removed using a two-step
procedure. First, the overburden Cu is removed with 
a high removal rate and the objective is to reduce the 
step height to a given specification with a certain 
amount of copper remains. The reason for stopping 
short from the oxide surface is that within-wafer non-
uniformity (WIWNU), as the results of incoming 
profile and CMP process, is often encountered in Cu 
CMP and the remaining Cu layer prevents
unnecessary dishing in the thin spots on the wafer. 
This is followed by the overpolishing step where 
overburden metal and some barrier are removed and 
this step is generally carried out using a much
smaller removal rate [Kao et al., 2002, Edgar et al., 
2000, and Yao et al., 2000].  As implied by the name, 
CMP removes overburden metal or unnecessary 
materials by the combinative effects of mechanical 
abrasion and chemical reactions.

Despite recent advances in CMP, some
manufacturing concerns associated with successful 
implementation of CMP remain to be overcome. In 
theory, CMP can achieve global planarity, but there 
is still a problem that different operating conditions 
will result in non-uniformity in thickness of wafer 
surface. The WIWNU indicates the variation in
surface thickness across the wafer radial position, 
especially on the edge. Besides, the surface profile of 
wafers produced from electrochemical plating (ECP) 
process appears that the metallic layer is thicker on 
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edge area. Thus, a new type of CMP, multi-zone
CMP, offers an attractive alternative. Multi-zone
CMP is expected to reduce WIWNU and to provide a 
wider processing window. Unlike the typical single 
zone configuration, the wafer carrier is divided into 
multiple zones in the radial position and different 
pressure can be applied to each zone (Fig. 1). The 
objective of this work is to devise a systematic 
approach to the modeling and control of such CMP 
processes.

2. MULTI-ZONE CMP

2.1. Process Description.

Consider a CMP system where the wafer carrier is 
divided into three zones in the radial position and 
different pressure can be applied to each zone (Fig.
1). For a wafer carrier with the radius of 150mm (i.e., 
a 300 mm wafer), zone #1 covers 0-130mm, the 
second zone ranges from 130-140mm, and third zone 
covers 140mm and beyond. Typically, the well-
known Preston’s equation [Preston , 1927] is used to 
model the polishing process. It describes t he material 
removal as a linear function of pressure and rotation 
speed.

p
RR K p v= ⋅ ⋅ (1)

where Kp is the Preston constant, p is pressure, and v 
is rotation speed. The Preston equation  can be
extended to multi-zone CMP in a straightforward
manner. For the multi-zone system, the relationship 
between removal rate at the ith radial position and 
input variables can be expressed as:



, ,i p i j j

j

RR K p v= ⋅∑ (2)

where Kp.i,j is the local Preston constant describing 
the effect of pressure from jth zone on the ith radial 
position, pj denotes the pressure of the jth zone, and 
v is again the rotation speed. Without loss of
generality, assume that the rotation speed is fixed 
throughout all runs and v is absorbed into Kp,i,j for 
the subsequent development.

2.2. Design of Experiments (DOE)

Copper (Cu) CMP is carried out on an Applied 
Materials’ ReflexionTM polisher using Titan
ProfilerTM polishing heads. Polishing pad (Rodel
IC1010) is used and the experimental copper CMP 
slurry is provided by Cabot Corporation.
Electrochemical plating (ECP) process is employed 
for Cu plating. The 300mm wafers without pattern 
are used in all tests. All copper thickness
measurements are performed with an in situ i-Scan
sensor.

All the experiments were carried out according to a 
standard design of experiment procedure (DOE). The 
factors in this work are the three pressures applied to 
each zone and a pressure applied to the retaining ring 
(i.e., keeping the wafer in proper position). From 
center of the wafer to the edge, they are defined as p 1,
p2, p3, and prr, respectively. We devise two levels for 
each factor such that a four-factor and two-level
design of experiment (DOE) is carried out. 

Before the test proceeds, the surfaces of 20 blanket 
wafers are measured. There are 119 measurement 
points from one edge to the other, so the pre-CMP
thickness is defined as:

[ ]T

0,1 0 ,2 0,119, , ,z z z=0z K (3)

The subscript 0 denotes the initial condition and i
represents the radial position across the wafer. The 
post-CMP thickness is also recorded after polishing 
for 60 seconds.

[ ]T

1 2 119, , ,z z z=z K (4)

Because of the symmetry of wafers and the applied 
pressures, an averaged value of the thicknesses on 
the opposite of the center taken and it is defined as 
the output variables. Thus, the pre-CMP and post-
CMP thicknesses are defined as follows:

[ ]T

0,1 0 ,2 0,60
, , ,y y y=

0
y K (5)

[ ]T

1 2 60
, , ,y y y=y K (6)

where the subscript i (i=1-60) denotes the position on 
wafer from center to edge, and

6 1 59
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With the definition of the output variables and polish 
time, the local removal rate can be calculated by Eq. 
(8):

i

i

y
RR

t

∆
=

∆
(8)

where ? yi denotes the amount removed
(

0,i i iy y y∆ = − ), and ? t denotes the total polish time. 

In modeling, the local removal rate is taken as the 
state variable (x) and it is also a 60x1 vector:

[ ]T

1 2 60, , ,x x x=x K
(9)

For this multi-zone CM P, the manipulated variables 
are the three pressures applied:

[ ]T

1 2 3, ,p p p=p (10)

Note that prr is discarded here because of negligible 
effect on wafer surface profile. The reason is that the 
pressure applied to the retaining ring is to keep the 
wafer in an acceptable range and it has little
influence on the removal rate across the radial
position. After discarding prr, the experimental
conditions of some sets seem to be identical. To 
maintain the correctness, the raw data of those sets 
are averaged. Therefore, there will be 14 sets of 
experimental data left and used in the regression.

2.3. Steady-State Analysis

From the definitions of state and input variables, the 
steady -state behavior  for the multivariable system 
can be written as follow s:

= ⋅
p

x K p (11)

where K p is the steady-state gain matrix. Given 
experimental data, Kp matrix (∈ℜ60x3) can be
determined from the least square regression. The 
regression result versus position on wafer is given in 
Fig. 2a. The effects of input pressures to the removal 
rate on each zone appear to be quite reasonable. The 
pressure applied on zone #1, p1, shows significant 
effect on removal rate on the range of 0-110mm and 
the influence degrades gradually toward the wafer 
edge as can be seen from the numerical values of the 
first column of K p (i.e., K p1). The pressure applied 
on the second zone, p2, shows a large value of
Preston constant around 135mm and its influence on 
removal rate diminishes toward both ends as shown 
in Kp2. As expected the input pressure of the third
zone shows little effect on the removal rate until 
135mm and then the influence grows linearly toward 
to edge. However, the unusual phenomena happened 
on edge area, for example, the reverse trend of Kp1

and the sharp decrease of Kp2, are detected. Those 
are attributed to the effect of noise. Therefore, the 
final data point is excluded from now on, and a new 
Kp matrix (∈ℜ60x3) is obtained.
Let us use the singular value decomposition (SVD) to 
analyze the system. The SVD decom poses the Kp

matrix of model into three matrices:
T=pK U S V

(12)
where U is a orthonormal matrix (∈ℜ60x3) in the 
output side, V is the input orthonormal matrix
(∈ℜ3x3), and S  is a 3x3 diagonal matrix with the 
singular value (s i) as the diagonal element. The ratio 
of the largest singular value to the smallest is the 
condition number (?=smax/smin) which is a
quantitative indicator of closeness to singularity.
After proceeding SVD, the V matrix is found similar 



to identity. Then each column of U matrix is plotted 
against position on wafer (Fig. 2b). As can be seen in 
the figure, the trends of the three columns in U
matrix are quite similar to those of Kp matrix. It 
indicates that the three directions are just enough to 
describe the characteristic of multi-zone system. The 
singular values sorted by number are 264, 3 1, and 16,
respectively, and condition number (? ) is 16, i.e., 
quite far away from a singular system. Thus, this is a 
well-defined multivariable system with 60 states and 
3 inputs.
Because of the characteristic of a non-square
property of system, it  is not possible to keep all 60 
outputs at their set points using only 3 inputs. Thus, 
non-uniformity is an inherent property of this multi-
zone CMP. Given the initial surface profile (y0)
(measured) and the desired thickness yd, the amount 
needs to be removed (? yd) can easily calculated by

0d d∆ = −y y y (13)
After the CMP with a polish time of ? t,  the error 
between the desired and actual thicknesses  can be 
expressed as

0 0

 ( )

d d

d

= − = − − −

= − ⋅

E y y (y y ) (y y)

x x ? t
(14)

Eq. (14) also indicates that the error is due to 
difference of actual removal rate (x) and desired 
removal rate (xd). In terms of the removal rate, we 
have:

d = ⋅px K p (15)

Solving Eq. (15) by the least-square method, the 
input pressures are computed:

1( )T T d−= ⋅ =
p p p

p K K K x † d⋅
p

K x (16)

where the superscript † denotes the pseudo-inverse.
Substituting p into Eq. (11), one finally obtains:

†

min

†

d

d

= − ⋅

= −
P P

P P

E (I K K )x ? t

(I K K ) ? y
(17)

The above equation indicates the achievable
performance for this multi-zone CMP and it is
characterized by the deviation of the projection

matrix (
†

p pK K ) from an identity matrix. Consider 

the case when every entry of the vector ? yd takes the 
value of 1. Fig.  3 shows the shape of the surface 
profile in the radial position. Since the 2-norm of 
Emin is equal to 0.0735, it implies an averaged error
of 73.5Å for 1000Å removed.

2.4. Dynamics Analysis

After obtaining the 60x3 steady -state gain matrix, the 
dynamic elements which correspond to the gas
holdup in each chamber are computed from the
residenc e times. They are associated with the inputs 
(pressures). Assume that the flow rate of air is fixed 
so the time constant is proportional to the volume of 
the chamber in the carrier. The largest one is set to 3
s, and the others two are 0.479 s and 0.502 s,
respectively. Therefore, we have a 60x3 process 
transfer function matrix with the same first order 
dynamics in each column. Moreover, from the

definition of the removal rate, the removed thickness 
is defined as:

( ) ( )y t x t=& (18)
Taking Laplace transformation, Eq. (18) becomes:

( )
( )

X s
Y s

s
= (19)

where Y(s) denotes the Laplace transformed
remaining thickness, X(s) is the Laplace transformed 
removal rate. Therefore, the polishing process can be 
expressed as:

1 2 3

( ) ( ) ( )

1 1 1 1
[ , , ]

1 1 1

1

p

p

p

Y s G s p s

K diag p
s s s s

K D p
s

τ τ τ

=

= ⋅ ⋅ ⋅
+ + +

= ⋅

(20)
where Gp is the process transfer function relating the 
input p(s) to the output Y(s), diag[.] denotes diagonal 
matrix, t i stands for the time constant associated with 
the ith input, and D represents the diagonal matrix. 
Note that Gp is a 60x3 transfer function matrix with 
the same dynamic element in each column and the 
dynamics in each column is represented by a second 
order integrating system.

3. CONTROL

In the process control notation, the measured data are 
the controlled variables and the manipulated
variables are the three pressures applied to each zone. 
Therefore, this is a 60x3 multivariable control
problem. The control objective is to maintain
uniform surface profile using all three manipulated 
variables. Because this is a non-square system, it is 
not possible to keep all the outputs at their set points 
using only 3 inputs. To the best, a least square 
solution, minimizing the sum of square of errors 
between the set point (desired thickness) and
controlled variables (measured thickness), can be
obtained. A 2-norm-based objective function is then 
considered:

2

f d

J = −y y (21)

where J is the objective function, yf and yd are
vectors (∈ℜ60x1) of measured thicknesses  (at end of 
each run, i.e., yf=y(tf)) and the desired thicknesses, 
respectively.
Some performance indices are introduced here.

i) Standard deviation (SD):

2

1

( ) /
n

f f

i

i

SD y y n
=

= −∑ (22)

where the overbar stands for the mean.
ii) 8 -norm of the deviation between measured 

thickness and the mean:

-norm
f f

y y
∞

∞ = − (23)

iii) The range of measured thickness:

max min
range f fy y= − (24)

where
max

max( )
f f

i
y y= and

min
min( )

f f

i
y y= .

iv) Non-uniformity (NU):



100%
f

SD
NU

y
= × (25)

Those provide simple measures of quality after
polishing. Obviously, the achievable performance 
defined by Eq. (17) also provides an absolute basis to 
evaluate control performance.

3.1. Ratio Control

Since the process model, at least Kp, is perfectly 
know, a simple control strategy can be implemented 
for the multi-zone CMP process. It is a feedforward 
control where the ratios of the pressures are
computed from the model inverse and ratios are 
maintained throughout the run..

The final NU in flat case is  about 5% which is 
acceptable in the fabrication. In other cases, the first 
two surface profiles with small SD value, IC1 and 
IC2, are regarded as finer initial conditions among 
the three. The indices of final status of those cases 
are slightly more than those of achievable status. 
However, their NUs are both kept within 5%. The 
SD of final status of IC3 is reduced while the other 
indices are not changing much. Basically, this kind 
of initial surface profile is hard to handle for the 
system. Thus, that indicates that ECP is supported to 
prevent production of that profile.

3.2. Multivariable Feedback Control

It is based on concept of feedback control. The 
controller adjusts the pressure input simultaneously 
according to the deviation between measured
thickness by sensor and set points (desired thickness). 
To monitor the change of surface in a polish run, 
therefore, an in situ sensor is required to measure 
copper thickness on -line and a non-square feedback 
controller necessary to generate input pressures. Fig.
4a shows the non-square system with the tall process 
(more output than inputs) and a fat controller (more 
input to the controller than the control output). The 
SVD-based approach is employed to design the
inversed-based controller. First, the steady-state gain 
matrix is decomposed into three matrices and the 
multivariable system can be expressed as (Fig. 4b):

1 1
( )

[ ]

T

Ti

s s

diag
s

σ

= ⋅ ⋅ = Σ ⋅

= ⋅ ⋅ ⋅ ⋅

p
Y K D p U V D p

U V D p

(26)

Next, the derivative part of the controller is taken as 
the inverse of D and the output of the PI part of the
controller becomes:

1

PI

−=p D p (27)

Thus, the relationship between the pPI and Y 
becomes:

[ ] Ti

PI
diag

s

σ
= ⋅ ⋅Y U V p (28)

Multiply the both sides with UT matrix (recall that 
both U and V are orthonormal matrices, i.e.,

T I=UU  and T I=V V ), one obtains:

[ ]T Ti

PI
diag

s

σ
= ⋅ ⋅U Y V p (29)

UTY and VTpPI correspond to the output and input in 
the principle directions and they are defined as Y*

(∈ℜ3x1) and p*(∈ℜ3x1), respectively. Therefore, we 
are left with a decoupled square system with simple 

diagonal elements, /i sσ . Define the diagonal matrix 

as Gp
*, the multivariable system becomes:

* * *

p
G=Y p (30)

Fig. 4c also shows the result of transformation. Note
the diagonalizing effort is absorbed into the
controller as shown in Fig. 4b. Therefore, standard 
multivariable control method can be applied to this 
decoupled square system.
The internal model control (IMC) principle is
employed to design the PID type of multivariable 
controller. In the IMC design, the relationship
between the IMC controller (CIMC) and the diagonal 
PI controller (CPI) is:

* 1ˆ[ ]
IMC PI p PI

C I C G C−= + (31)

where *ˆ
p

G  is the model of the process. The IMC 

design consists of the following steps:

i. Decompose the diagonal process model 
*ˆ
p

G  into:
*ˆ
p

G ( )s = ˆ ( )
p

G s+ ⋅ ˆ ( )
p

G s− (32)

where ˆ
p

G
+

 represents the terms of time delay and all 

the right-half plane zeros, ˆ
p

G
−  represents the

invertible part. Since the system doesn’t contain any 

non-minimum phase element, *ˆ ( )
p

G s  is equal to ˆ ( )
p

G s
− .

ii. Because the trajectory for the removed thickness is 
a ramp function (increase linearly with time), the
type-2 input is assumed for the design of the
controller. Thus, the IMC filter (F) is chosen as:

[ ]
i

diag f=F (33)

, and

,

2

,

2 1

( 1)

C L i

i

C L i

s
f

s

τ

τ

+
=

+
(34)

where t CL,i is the closed-loop (filter) time constant in 
each loop. In this work, the filter time constant is set 
to 30% of the open-loop time constant.
iii. The IMC controller is thus obtained.

* 1ˆ( )
IMC p

C G
−= F (35)

Substituting CIMC into Eq. (34), and the diagonal PI
controller (CPI) becomes:

* 1 1ˆ ˆ[ ] ( ( ))
1

i

P I IMC p IMC p

i

f
C C I G C G s

f

− − −

= − =
−

(36)

In a matrix form, the diagonal multivariable PI
controller becomes:
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 
 
 
 
 
 
 
 
 

(37)
Once the diagonal controllers become available, the
full multivariable PID controller can be obtained by 
pre-multiplying the inverse of dynamic element (D-1)
and the Vc matrix (from the SVD) (Fig. 4b). The 
resultant controller CPID becomes:

11 ,1 1 12 ,2 1 13 ,3 1

21 ,1 2 22 ,2 2 23 ,3 2

31 ,1 3 32 ,2 3 33 ,3 3

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

PI PI PI

PID PI PI PI

PI PI PI

v C s v C s v C s

C v C s v C s v C s

v C s v C s v C s

τ τ τ

τ τ τ

τ τ τ

+ + +

= + + +

+ + +

 
 
 
  

 (38)
This multivariable controller consists of a diagonal 
PI type of controller, a Vc matrix which is generated 
from the SVD of system, and an inverse matrix of D
(containing the derivative term). Thus, it becomes a 
full multivariable PID controller. Each element of 
this multivariable controller can be expressed
analytically:

1 ,

, 2

, , ,

2 21 1
( ) ( ) ( )i C L i i

PIDi j i ij

C L i C L i C L i

c v s
s

τ τ τ
σ

τ τ τ

− +
= ⋅ + +

 
 
 

(39)
In terms of PID settings, the controller parameters,
proportional gain , reset time and derivative time,
thus become:

,

, 2

,

( 2 )
ij i C L i

c i j

i C L i

v
K

τ τ

σ τ

+
= (40)

,

,

ij

I i j

i C L i

v
τ

σ τ
= (41)

,

,

2
ij i

D i j

i C L i

v τ
τ

σ τ
= (42)

Taking the flat profile as an example, Fig. 5a shows 
the snapshots of the surface profiles throughout the 
polishing process. The control performance can be 
seen from the responses of the manipulated variables 
(Fig. 5 b & c) and the tracking error (Fig. 5d). In 
terms of the principle output (Fig. 5d) and input (Fig. 
5c), the output settles to the set point in less than 20 
seconds and acceptable control performance is
obtained using the SVD-based multivariable
controller. For CMP process, the ultimate
performance measure in the uniformity. Table 1
summarizes all the indices using the ratio control as 
well as the multivariable feedback control.
Comparison is made with respect to the achievable 
performance (Table 1). Results clearly indicate that 
the multivariable feedback control leads to the
performance close to the achievable performance
while the ratio control shows 4-15% deviations from 
the achievable one. More importantly, the seemingly 
complex control system can be design systematic 

manner with rather standard feedback design
methodology.

4. CONCLUSION

In this work, a systematic modeling and control 
system design approaches are proposed for a multi-
zone CMP system. The multi-zone CMP is intended
to reduce the within-wafer non-uniformity (WIWNU) 
by manipulating different pressures  across the radial 
position. This leads to a non-square multivariable 
system, a 60x3 system for the example studied. In the 
modeling phase, two 23 full factorial experimental
design is carried out and steady -state gain matrix is 
obtained from the lease square regression followed 
by including the dynamic element associated with 
each input. For multivariable control, two control 
strategies with different degrees of complexity are 
proposed. First, a simple ratio control is designed 
based on the pseudo-inverse of the process model 
and, provided with the initial surface profile, the 
input pressures are computed and the ratios are
maintained throughout the polishing run. The results 
show that, while giving reasonable uniformity, the 
performance is a little short from the achievable 
performance. Next, an on-line multivariable control 
system is designed. The singular value
decomposition (SVD) is used to project the input and 
output in the principle directions and, therefore, the 
controllers can be designed in a reduced dimension 
(3x3) for a decoupled system. Then, the diagonal 
controllers are transformed back to the true
input/output spaces. This significantly reduces the 
engineering effort in control system design. Results 
show that achievable control performance can be 
maintained using the SVD-based multivariable
controllers.
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Table 1. Different uniformity measures of wafer 
surfaces before and after CMP using ratio control, 

multivariable feedback control and achievable 
performance (from Eq. 17) also given for 

comparison

Fig. 1. Configuration of multi-zone CMP.

Fig. 2. Steady -state gain vectors and vectors of the U 
matrix from SVD

Fig. 3. The error vector of achievable performance by 
assuming input vector of unity.

Gc Gp
Yset Y+

-

p

(a) Original non-square system

Yset Y
Uc
T CPI V c V T U

e* p*

Gc Gp

p+

-
D-1 D

Y*

s

ΣpPI

(b) SVD of the Process and Controller

Gp
Y set Y+

-
CPI

*
** p*

(c) Equivalent Decoupled System
Fig. 4. Evolution of the SVD -based design and

corresponding block diagrams.

                 (a)                                   (b)

                 (c)                                     (d)
Fig. 5. Results of multivariable feedback control for 

incoming wafer with flat profile: (a) snap shots of 
surface profile, (b) pressures, (c) principal input, 
and (d) error in the principle direction.

Surface profile Flat IC1 IC2 IC3
SD 0 62.21 88.47 159.4

8-norm 0 378 636 603
range 0 444 714 734

Initial

NU (%) 0 0.71 1 1.15

min 2
E 727 535 698 1170

SD 95.46 70.3 91.61 153.6
8-norm 189 142 321 457
range 363 272 541 802

Achievable

NU (%) 4.77 3.51 4.58 7.68

2
E 786

751
618
579

740
703

1218
1201

SD
101

95.23
77.5
70.04

97
91.52

157
153.33

8-norm
225
189

223
143

330
322

444
455

range 379
362

345
273

528
541

778
800

Final

(Top: ratio
control

Bottom:
multivariable
feedback
control) NU (%)

5.01
4.7

3.83
3.45

4.83
4.55

7.72
7.53

Relative error* 8.12
3.3

15.51
8.22

6.02
0.72

4.1
2.65
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