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Abstract: In this work, a Smith predictor enhanced PID controller, SP-PID, is proposed. A 
tuning parameter Ksp is devised which gradually transforms the controller from a PID 
controller to a Smith predictor as Ksp changes 0 to 1. Properties of the SP-PID are 
explored and design procedure is given to ensure a certain degree of robustness. 
Simulation results clearly indicate that the SP-PID takes advantage of the SP when small 
modeling error is encountered and it is gradually detuned to a PID controller, a user 
friendly controller, when the model quality degrades. Moreover, the proposed concept can 
be implemented to current process control computer with virtually no extra hardware cost. 
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1. Introduction 
 

The Smith predictor (SP) introduced by Otto Smith 
(1957) provides a nice controller structure for 
deadtime compensation and it has received 
considerable attention over past 40 years (Meyer et 
al., 1976; Ogunnaike and Ray, 1979; Morari and 
Zafiriou, 1989; Huang et al., 1990; Palmer and Blau, 
1994; Lee et al., 1996; Kwak et al., 1999; Majhi and 
Atherton, 2000; Kaya, 2001; Ingimundarson and 
H gglund, 2002). However, the modeling 
requirement, non-trivial tuning, and unfamiliarity 
prevent wide-spread applications. A typical scenario 
is that, in order to maintain robust stability, the 
associated PI controller is detuned to such a degree 
that control performance is no better than a simple PI 
controller and this is especially true for systems with 
small deadtime to time constant ratio (D/τ) 
(Ingimundarson and Hägglund, 2002). Despite the 
clear advantage for deadtime dominant processes, the 
Smith predictor again finds limited applications 
throughout process industries. On the other hand, we 
have found PID controllers remain as a standard 
feature in process industries (Åström and Hägglund, 
1995; Yu, 1999; Tan et al., 1999). 

The modeling problem of the SP can be overcome 
using relay feedback tests which also becomes a 
standard feature in many process control computers 
(Åström and Hägglund, 1984; Luyben, 1987; Chang 
et al., 1992; Palmer and Blau, 1994; Yu, 1999; Majhi 
and Atherton, 2000; Wang et al., 2003). Based on the 
shape information, the model structure as well as 
model parameters can be identified in a single relay 
feedback test (Luyben, 2001; Thyagarajan and Yu, 
2003). Once the process model is available, one can 

proceed with controller tuning. In this work, a new 
type of controller is proposed which includes the 
Smith predictor as an enhanced feature of a standard 
PID controller. Next, a new tuning parameter, Ksp, is 
devised which provides a gradual transition between 
the SP (Ksp=1) and PID (Ksp=0) controller. That is the 
Smith predictor is functioning at its full capacity 
when the model quality is good and the deadtime 
compensation feature is gradually turned off when 
plant-model mismatch develops, and, ultimately, the 
controller reduced to the familiar PID controller. 

The remainder of this paper is organized as 
follows. The concept of SP-PID is depicted and 
design procedure is also given in section 2. Improved 
PID design is proposed and robust performance of 
SP-PID is explored in section 3 followed by the 
conclusion. 
. 

2. Smith predictor enhanced PID control 
. 2.1 Concept 

 
Ingimundarson and Hägglund (2002) present an 
interesting paper showing that the performance of the 
SP (Fig. 1b) is inferior than a PI (Fig. 1A) controller 
for first order plus deadtime systems (FOPDT) with 
the deadtime to time constant ratio (D/τ) less than 0.2. 
Moreover, for PID controller, the advantage of the 
SP can only be seen for FOPDT systems with D/τ 
greater than 10. It is troublesome because how can a 
modeled-based approach, with correct controller 
structure, fail to achieve improved performance. The 
reason is obvious that the SP is significantly detuned 
to achieve certain degree of robustness (or the PI 
settings were tightened to obtain better performance).  
In other words, if a model-based controller is loosely 
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Fig. 1 Structures of: (A) PI control, (B) Smith 
predictor, and (C) Smith predictor enhanced PI 
control (SP-PID). 
 
tuned, the performance can be no better than a PI 
controller. This scenario is often encountered in   
practice, especially when the users are not familiar 
with the controller and its tradeoff between the 
robustness and performance. 
 
 On the other hand, the progress in integrated circuits 
provided much increased computing ability for most 
controllers. From the hardware perspective, the 
implementation cost of a Smith predictor is virtually 
the same as a standard PID controller. How can we 
integrated the model-based SP into the standard PID 
controller while possesses some degree of user 
friendliness. Figure 1C shows the Smith predictor 
enhanced PID controller via a new tuning constant 
Ksp. Figure 1C indicates that when Ksp is set to one, it 
becomes the SP (Fig. 1B) and when Ksp is turned to 0, 
the feedback reduced to the conventional one, a PID 
type of controller. That is the amount of deadtime in 
the feedback (DR, remaining deadtime) can be 
adjusted via Ksp from high performance/less 
robust/less familiarity (Ksp=1) to nominal 
performance/increased robustness/familiarity (Ksp=0). 
Certainly, this provides a gradual transition from a 
SP to a PID controller. 
    

2.2 Analysis 
 

Consider the block diagram in Fig.1 where the 
process G is expressed in terms of the delay-free part 

*G  and the deadtime portion Dse− . 
DseGG −= *                                     (1) 

The model also has a similar structure.   
sDeGG

~*~~ −=                                     (2) 

when *~
G  is the delay free part of the model and D

~
 

is the deadtime in the model. The closed-loop 
relationship of the SP can be expressed as  
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where sety  is the set point, K is the feedback 
controller and L is the load variable. With the perfect 

model assumption (i.e., G G= � ), we have : 
*
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              (4) 

The advantage of the SP can clearly be seen from the 
characteristic equation (denominator of Eq. 4) that 
the controller K can be designed aggressively to 
achieve a large bandwidth. For the proposed SP-PID 
controller in Fig. 1c, the closed-loop relationship 
becomes: 
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Similarly, when G G= � , one obtains: 
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Eq. 6 clearly contrasts the difference between the SP 
and the SP-PID where, for the later, the remaining 
deadtime (DR=(1- Ksp)D) in the feedback loop is 
adjustable via Ksp. It becomes a SP on one end (Ksp 
=1) and resumes the role of a PID controller on the 
other end (Ksp =0). 
 
Let us use the first order plus deadtime (FOPDT) 
process to illustrate the performance and robustness 
characteristics of SP-PID control. Consider  

( )
1

Ds
pK e

G s
sτ

−

=
+

                            (7) 

Here, pK  is the steady-state gain, τ  is the time 

constant, and D is the deadtime. Without loss of 
generality, we use IMC type of tuning rule for a PI 
controller (Morari and Zafiriou, 1989; Chien and 
Fruehauf, 1990). First, a closed-loop time constant 
λ  is selected and the controller gain becomes: 

λ
τ

p

I
c K

K =                               (8) 

and the rest time Iτ  is simply set to: 

ττ =I                                     (9) 
Note that this assumption will be relaxed in a later 
section. In doing this, the closed-loop relationship for 
the SP-PID becomes: 
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Fig. 2 Tolerable deadtime error and IAE for: (A) PI 
control, (B) Smith predictor, and (C) Smith predictor 
enhanced PI control. 
 
where λ  is the closed-loop time constant. The 
integrated error (IE) for a unit step setpoint change 
can be derived analytically using the final-value 
theorem. 

(1 )
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    (11) 

Eq. 10 shows that the IE is a function of the closed-
loop time constant ( λ ) as well as Ksp. If λ  is 
chosen to be a function of the remaining deadtime 
(DR) in the feedback loop and following the IMC-PI 
tuning rule, we have: 

    R1.7 1.7(1 )spD K Dλ = = −                 (12) 

and IE thus becomes: 

setpoint(IE) (1.7 0.7 )spK D= −  

Despite the fact that the IE is a good performance 
measure only for monotonic step response, it 
provides a qualitative indication of the closed-loop 
performance for the SP-PID. Figure 2 show a more 
realistic performance measure, the normalized 
integrated absolute error (IAE*), for the proposed 
controller. For a FOPDT system, the normalized IAE 
is defined as: 

*

min

IAE
IAE

IAE
=                            (13) 

where IAEmin is the minimum IAE and for a FOPDT 
system it is simply IAEmin =D for a unit step change. 
Figure 2c shows that the performance is improved as 
we turn on the deadtime compensation portion of the  
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Fig. 3 Closed-loop time constant (A), IAE (B), and 
tolerable deadtime error (C) for SP-PID. 
 
controller via an increased Ksp. Qualitative correct 
trend is also seen as compared to the simple 
performance measure in Eq. 12. Similarly, the 
performance of the SP can be conjectured from Eq. 
10 by setting Ksp =1 and the normalized IAE (IAE*) 
is also shown in Fig. 2b. However, the performance 
degrades significantly for a PI controller at region of 
small λ  (Fig. 2a) for an obvious reason: the stability 
constraint is almost violated and oscillatory 
responses result at small λ  region. The performance 
part (IAE*) of Fig. 2 indicates that the SP-PID takes 
the advantage of the Smith predictor at the high 
performance region and it is reduced to a PID 
controller when performance requirement is not high. 
 
The characteristic equation in Eq. 5 can be used to 
evaluate robust stability with respect to deadtime 
error. Assume uncertainty occurs in the deadtime part 
(i.e., D D≠ � ) the closed-loop characteristic equation 
(CLCE) becomes: 

(1 ) ( )( 1) 0sp sp D spK Ds K Ds K Dss e e eδλ − − − + −+ − + =
� � �

      (14) 

where δ  is the multiplicative deadtime error, i.e. 
( ) /D D Dδ = − � � . Taking the extremes (Ksp =0 and Ksp 

=1), the CLCE’s for the PI and SP are: 

       (1 ) 0Dss e δλ − ++ =�

                                     (15) 
(1 ) 1 0Ds Dss e eδλ − + −+ − + =� �

                    (16) 
Eqs. 14~16 can be used to compute tolerable 
deadtime errors ( Dδ ) for different closed-loop time 
constants (Cheng and Hwang, 1999). By tolerable 
deadtime error we mean the amount of deadtime 
error leads to the limit of stability. Interesting enough, 
conditional stability is observed for the SP as well as 
SP-PID over certain ranges of controller settings 
when is not observed for the PI controller. Figure 2 
also reveals that extreme sensitivity for deadtime 
error when λ  approaches zero or Ksp approaches one. 
Certainly, such settings are not acceptable in practice, 
despite almost perfect performance. 
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Fig. 4 IAE’s for unit step setpoint (A) and load (B) 
changes and tolerable deadtime error (C) using SP-
PID. 
 

2.3 Design 
 

The design principle is to turn the SP gradually 
toward the PID controller when the model quality 
degrades while maintain a certain of robustness at the 
SP end with respect to deadtime error. Let us 
consider controller tunings at two extremes, Ksp =0 
and Ksp =1. At the PI control end (Ksp =0), the 
closed-loop time constant λ  is set proportional to 
the deadtime. That is: 

PI Dλ δ= ⋅                             (17) 

A typical value of 1.7PIδ = is often employed 

according to the IMC-PI rule. At the SP side, λ  is 
often selected to handle a pre-determined degree of 
deadtime error. Note that the setting does not have to 
be conservative because the tradeoff between 
robustness/performance is handled by the controller 
via Ksp. A typical value of 20% tolerable deadtime 
error ( ,min 0.2Dδ = ) is recommended at the 

performance end. Therefore, we can read-off SPδ  

directly from Fig. 2b given ,minDδ  (or computed SPδ  

from Eq. 16). Thus, we have  
                        SP Dλ δ= ⋅                                (18) 

In theory, Eqs 17 and 18 will be sufficient to 
formulate the tuning constant for the SP-PID. 
However, in order to ensure the tolerable deadtime 
error is larger than ,minDδ  over the entire Ksp range 

(0~1), a switching point of Ksp has to be located that 
gives the tolerable deadtime error to be ,minDδ . Then, 

a linear interpolation is employed to set the closed-
loop time constant for Ksp greater than Ksw (Fig. 3). 
In other words, we have: 
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Therefore, the controller design procedure becomes: 
S1. Select PIδ  (e.g., from IMC-PI tuning rule). 

S2. Choose ,minDδ  (a typical value is ,minDδ =0.2, 

20% deadtime error). 
S3. Find SPδ  from Eq.16 (or Fig. 2B) and Ksw from 
Eq. 15 (or Fig. 2C). 
S4. Set the closed-loop time constant to 

( ) ( )max 1 , 1
1

sp sw
sp PI sp PI SP

sw

K K
K K

D K
λ δ δ δ

� �−� �
= − − + �� �−� 	� �

 If 

IMC-PI tuning rule is employed (i.e., Iτ τ=  and 

PIδ =1.7), for ,minDδ =0.2, we have: Ksw =0.8 and 

SPδ = / Dλ =0.129. Figure 3 shows the relationships 

among closed-loop time constant / Dλ , performance 
(IAE*), and robustness to deadtime error ( Dδ ). Note 

that Fig.3 remains the same for FOPDT systems with 
all possible D/τ ratios provided with the plain IMC-
PI tuning, i.e., 

Iτ τ=  and /c p IK K τ λ= . Fig. 3B also 

shows that the IAE at the PI and (Ksp =0) is at 210% 
of the minimum value as opposed to 170% predicted 
by Eq. 9 using the integrated error (IE). The reason is  
obvious that the area above and below the set point 
cancelled out each other, a non-monotonic set point 
response. Control performance can be improved 
using improved IMC-PI tuning rules (Morari and 
Zafiriou, 1989; Chien and Fruehauf, 1990). 
 

3. Performance 
3.1 Improved PID tuning 

 
The improved IMC-PI tuning rule takes the effect of 
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Fig. 6 Deadtime error resulting in conditional 
stability (A) and corresponding setpoint responses 
(B).errors  
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Fig. 7 IAE’s for SP-PID and SP  designed for the 
same amount of tolerable deadtime error under the 
same percentage (0, 5, 10, 20%) of deadtime errors. 
 
deadtime into consideration and, thus, the reset time 
is adjusted according to / 2I RDτ τ= + . Following the 
same line, the controller gain becomes: 

/( ) /(1.7 )c p I PI R I RK K D Dτ δ τ= ⋅ = ⋅  

Using this setting, the closed-loop characteristic 
equation for the SP-PID can be expressed as (cf. Eq. 
14): 
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(20) 
Eq. 20 can be used to computed the switching value 
of Ksp (Ksw) and SPδ  given ,minDδ . Again, procedure 

in sec. 2.3 can be employed to design the SP-PID for 
systems with different D/τ values. Results reveal that 
the setpoint performance and robust stability are 
functions of D/τ while the regulatory performance is 
almost independent of the deadtime to time constant 
ratio as shown in Fig. 4. Furthermore, improved 
performance (e.g., IAE* =170% for D=10 with Ksp 
=0) actually can be achieved using a better tuning 
rule for the PI controller, especially at high D/τ 
region. 
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Fig. 8 Setpoint (A) and load (B) responses for +10% 
(left) and +20% (right) deadtime errors for D/τ=5 
using SP and SP-PID (designed with the same 
amount of tolerable deadtime error) 
 
Let us use a system with D=1 and D=5 to illustrate 
the performance of the SP-PID control. Figure 5 
shows that better performance becomes evident as 
we gradually turn on the Smith predictor. But this is 
achieved with the expense of decreased robustness as 
also shown in Fig. 5,comparing the tolerable 
deadtime error ( Dδ ). Figure 5 clearly illustrates the 
advantage of the SP-PID control where aggressive 
tuning (provided with correct controller structure) 
can be applied when the model quality is good and 
the controller structure is detuned (via Ksp) as the 
model quality degrades. 
 

3.2 Robust Performance 
 

Up to this point, we have only studied the nominal 
performance of the SP-PID. One may wonder how 
the proposed one differs from a detuned Smith 
predictor? The SP-PID control has two clear 
advantages over a typical SP. First, it provides a 
transparent tuning constant Ksp in a finite range and 
the user can use the on-off concept to adjust the 
performance/robustness tradeoff while, for the SP, 
we really do not know to what degree the 
corresponding PI controller should be detuned when 
the model quality degrades. The second, but not an 
obvious one, is that the SP-PID gives a better robust 
performance. Let use design both the SP-PID (via Ksp) 
and the SP (via closed-loop time constant λ ) with 
the same amount of tolerable deadtime error over a 
wide range of Dδ , 20%~200%. Again, let us use 
D=5 case as an example. Nominally, the SP gives 
better performance over the range of small Dδ  as 
shown in Fig. 7. However, as the deadtime error 
increases to 5%, 10%, 20% of the nominal value, the 
SP-PID shows a slower rate of increase in the 
integrated absolute error (IAE*) as shown in Fig. 7. 
This is the case for both set point and load changes. 
Figure 8 compares the performance of the SP-PID 
and SP for 10 & 20% deadtime for the case of 

Dδ =40% (Ksp=0.52 for SP-PID and / Dλ =0.264 for 



 

     

the SP). Similar behavior is observed for systems 
with different D/τ  values. 
 

 
 Conclusion 

 
In this work, a new type of controller, Smith 
predictor enhanced PID controller SP-PID, is 
proposed. A tuning parameter (Ksp) gradually 
transforms the controller from a PID controller to a 
Smith predictor as Ksp varies from 0 to 1, a controller 
with a well-defined range of settings. The PID 
parameters are adjusted according to the remaining 
deadtime in the feedback loop. The characteristics 
and stability of the SP-PID is explored and a design 
procedure is proposed to ensure a pre-specified 
degree of robustness. Following the design procedure 
with a minimum deadtime error of 20%, we have the 
following recommendations for 4 distinct settings: 
(1) Set Ksp=1 right after autotuning. This 

correspond to tolerable deadtime error ( Dδ ) of 
20% and normalized integrated absolute error 
(IAE*) of 1.13 for all D/τ. 

(2) Set Ksp=0.65 for D/τ�1 and Ksp=0.5 for D/τ>1 
when oscillatory behavior occurs. This 
corresponds to Dδ = 40% & IAE* =1.38 for 

D/τ=1 and Dδ = 38% & IAE*=1.35 for D/τ=10. 
(3) Set Ksp=0.35 when oscillatory behavior is 

again observed. This corresponds to Dδ = 

138% & IAE* =1.65 for D/τ=1 and Dδ = 162% 

& IAE*=1.45 for D/τ=10. 
(4) Turn the SP-PID to a PID controller, Ksp =0, 

when significant oscillation still exists. This 
gives Dδ = 153% & IAE* =1.92 for D/τ=1 and 

Dδ = 198% & IAE*=1.70 for D/τ=10. 
Certainly, when the PID control (Ksp=0) still cannot 
provide satisfactory control performance, a further 
detuning and/or autotune identification should be 
initiated. Simulation results show that the SP-PID 
indeed takes advantage of the theoretically correct 
SP structure while maintaining the familiar PID 
structure, user friendliness. More importantly, it can 
be implemented on current process control 
computers with virtually no extra hardware cost. 
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