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Abstract: In a changing operational environment, a major challenge that still exits is the 
assured state and parameter estimation of dynamic processes . The values or expressions 
of important parameters can be difficult to determine and initial errors may be present in
some parameters as a result of changes in the initial operating conditions. Furthermore as
a result of variations in the environmental and operational conditions or the dynamic 
characteristics of the process, parameters may be time -varying. In this paper, an on-line
Bayesian parameter estimator is developed and evaluated on a simulation of a batch
methyl methacrylate process. Copyright © 2004 IFAC
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1. INTRODUCTION
 
The operating objectives in many batch
polymerisation processes must satisfy complex
property requirements in terms of the final polymer 
whilst simultaneously achieving the best operational 
performance of the batch. Most properties of the 
polymer products are directly or indirectly linked 
with the molecular structural pro perties of polymer 
chains (e.g. molecular weight distribution, copolymer
composition distribution, chain sequence length
distribution, etc.), which are difficult (sometimes 
impossible) to measure on-line. Average polymer
molecular weight properties (e.g. number and weight 
average molecular weight), which can be indirectly 
inferred from the on-line measurement of the solution 
viscosity or melt index of the poly mer, are commonly 
selected as the control variables that need to be 
maintained within well-determined limits so that
product quality criteria can be satisfied. 

Control strategies require that pre-determined
trajectories  for key process variables (e.g. reactor
temperature) are followed during batch operation 
(Thomas and Kiparissides, 1984). However, the

operational performance of a batch polymerisation 
reactor is affected by process disturbances potentially
resulting in changing operating conditions. A
consequence of this is the introduction of process-
model mismatch and hence the need for time-varying
model parameter values and the regular updating of 
the optimal control trajectories during batch
operation, otherwise the control strategy may fail to 
meet the product quality specifications and the
operating requirements (Kiparissides, et al, 2002).
 
Despite the large number of papers discussing the 
control of polymer properties using an Extended 
Kalman Filter (EKF), very few tackle the issue of 
robust parame ter updating (Gagnon and MacGregor, 
1991; Kozub and MacGregor, 1992). MacGregor and 
co-workers (1991, 1992) analysed the parameter
updating issue and emphasised the need to update as 
many parameters as possible in order to incorporate 
all possible  changes that c ould affect the process.

The general problem of parameter estimation is
associated with the fitting of a model to a set of 
measurements. Given a model with some unknown 
parameters, a parameter estimator calculates those



parameter values that result in the model predicted 
values of the process outputs being closest to the 
corresponding measured values of the process
outputs. In off-line parameter estimation, a model is 
fitted optimally to the process measurements from 
one or more completed process runs. In contrast, in 
on-line parameter estimation, a model is fitted to the 
past and present process measurements whilst the 
process is in operation (Narendra and Annaswamy ;
1988, Bastin and Dochain, 1986; Yin, 1993).
 
Schuler and Schmidt (1992) discussed the effect of 
unmeasured and time varying parameters such as 
reactive heat flow and heat transfer coefficients, and 
presented a parameter adaptive EKF with additional 
stochastic states to approximate these parameters. 
Scali, et al, (1997) applied a parameter adaptive EKF 
to a methyl methacrylate (MMA) polymerisation in a 
continuous solution CSTR reactor. Sirohi and Choi
(1996) applied the EKF and an optimisation based 
non-linear dynamic parameter estimator to a
continuous olefin polymerisation reactor. They
combined the two algorithms to estimate the
uncertain kinetic parameters on-line.
 
Parameter estimation through on-line optimisation 
has also been widely applied. For this approach, 
parameter estimates are obtained by solving on-line a 
minimisation problem such as the sum of square d
errors (Muske and Rawlings, 1995; Robertson, et al ,
1996). As in state estimation, this parameter
estimator can either have an increasing or constant
horizon (Muske and Rawlings, 1995). Although this
methodology is computationally expensive, it allows 
the inclusion of constraints in the estimation. With
the advancement of computers in terms of speed, the
computational problem will soon cease to be an 
issue.

An alternative approach to implementing parameter 
estimation is to make use of Bayesian technologies .
Here prior information about the parameters is
combined with the process observations .
 
 

2. BAYESIAN PARAMETER ESTIMATION
 
 
2.1 Basic Framework of Bayesian Parameter

Estimation
 
Consider a non-linear process. It is assumed that the 
process has an )1( ×n  state vector, )(tx , that can be 

described by the continuous time process model:

),),(()( ttt ?xfx =&

0)0( xx =
(1)

 
where the measurement model takes the form:
 

tttt v?xhy += ),),(()( (2)

(.)f  and (.)h  are non-linear system and observation 

functions respectively. )(ty  is an )1( ×m  vector of 

observations over the time period K,2,1=t . For 

convenience, the measurement information )(ty  is 

represented by ty . Let tD  be the information set 

available prior to time t. Thus given the initial prior 
information 0D  at time point 0=t , at any future 

time t, the available information set is:
 

},{ 1−= ttt DyD (3)
 
?  is a vector of unknown parameters about which 
there may be some prior beliefs that can be expressed 
as a probability density function, )(?p . This prior 

distribution can be defined using either previously
monitored data, or an expert’s knowledge. tv  is the 

vector of observational error, and is defined as a 
normal random variable with zero mean:
 

],0[~ tt N Vv (4)
 
Equations (1) and (2) define the model relating ty  to 

the parameter vector t?  at time t, and has a
probability distribution that is a function of the 
unknown parameters. The dependence of ty  on t?

can be expressed as the conditional probability
density function )|( ttp ?y :
 

)|),(()|( tttttt pp ?v?xh?y += (5)
 
Once t?  has been defined, the following

characteristics can be obtained:
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Thus the observation equation can be expressed as a 
conditional distribution:

)),,((~)|( ttttt Np V?xh?y (7)
 
To update the probability density of the unknown t?

after new process data has been obtained, Bayes 
theorem is applied:
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The denominator, )( tp y  is the unconditional

probability density of the observation data and from 
the law of total probability:



cdppp ttttt == ∫ ???yy )()|()( (9)

This value acts as a normalising constant. To
construct the Bayesian parameter estimator, the
posterior density is expressed as:
 

)(log)|(log1)|( ttt pp
tt ecp ??yy? +−= (10)

 

A point estimate of the unknown parameters t? , t?̂

is the value that maximises the a-posteriori density. 

That is, t?̂  maximises the probability that the

estimate is correct. To maximise the posterior
probability density )|( ttp y? , the function

)|( ttJ y? is minimised:
 

)(log)|(log)|( ttttt ppJ ??yy? −−= (11)
 
This function is associated with the new measured
process data and the prior information. The
incorporation of measurement data and prior
information provides a weighting based on
knowledge of the statistical error. Consequently the
parameters can be identified from measurements and
constrained by the prior density. Thus, a working
expression for )|( ttJ y?  can be derived from

equation (11):
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and the Bayesian parameter estimation problem is
defined as a constrained minimization problem:
 

t?
min )|( ttJ y?

s.t. ?? Ω∈t

(13)

 
where the constraints ?Ω , in the simplest case, is a 

set determined by the lower and upper bounds of the 
elements of t?  and is solved using SQP.
 
 
2.2Bayesian Parameter Estimation for Dynamic

Processes
 
Uncertain or unknown parameters can result in
model-plant mismatch that can lead to the failure of 
model based control and optimization strategies. For
some of these parameters, it is difficult to determine 
the accurate value since operational conditions are
constantly changing. Others may be time-varying and
thus need to be estimated on-line at every sampling
interval.

Performing discretisation of the dynamic model with
respect to the state variables tx gives:
 

ttttt w?xfx += − ),( 1 ],0[~ Ww Nt

ttttt v?xhy += ),( ],0[~ Vv Nt

(14)

 
The error sequences tv  and tw  are zero mean, white 

Gaussian random sequences with:
 

0)]()([ =ttE Twv

0)]()([ =τ+ttE Tvv ;

0)]()([ =+τttE Tww

(15)

 
 
2.3 Estimation for Non-time-varying Parameters 
 
For those parameters that are not known accurately 
and that are not time-varying, such as the initiator
concentration, or those parameters that change  in
magnitude only after a change in operational
conditions occur, updated parameter estimates at
every time instance is not necessary. After the
process starts-up or a change in operational condition 
occurs, parameter estimation is necessary once
sufficient observational data become available.
 
A Bayesian parameter estimator for non-time-varying
parameters can be derived and has the following
objective function:
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2.4 On-line Estimation for Time-varying Parameters
 
Time-varying parameters need to be estimated on-
line to minimise model-plant mismatch and ensure
acceptable performance of model based control and
optimization strategies . The estimator structure
derived in equation (16) is not suitable for estimating
time-varying parameters. For time-varying
parameters, at any time instant, t, the unknown
parameters are estimated by:

)|(minˆ
tttt J y?? =

)],([)],([
2
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tttt
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The Bayesian updating process is an iterative
procedure. The prior distribution represents the
analyst’s state of knowledge prior to the last set of 



evidence, not prior to all evidence. In many cases
therefore, when new observational data are obtained,
the prior distributions are updated using Bayes
theorem thereby becoming posterior distributions.
The informative prior distribution is simply the
posterior distribution from the last updating
calculation. That is the prior distribution function

)( tp ?  can be the posterior distribution from the last 

updating calculation, )|( 11 −− ttp y? .

For a Bayesian normal model, the means of the
posterior distribution of parameters at time t-1 are the 
estimates of the parameters. At any time point t, the 
measurement vector is ty  and the estimation vector

1
ˆ

−t? is the mean of the distribution )( tp ? . Hence:
 

)|()( 11 −−= ttt pp y??  and 1
ˆ

−= tt ?? (18)

 

Thus the new estimates at time point t are t?̂ .
 
 
3. BAYESIAN PARAMETER ESTIMATION FOR
A BAT CH MMA POLYMERISATION PROCESS

 
The process studied is a pilot scale polymerisation
reactor (Achilias and Kiparissides, 1992). The batch 
reaction is the free-radical batch polymerisation of
methyl-methacrylate (MMA) with a water solvent
and benzoyl peroxide initiator.

The jacketed reactor is provided with a stirrer for
thorough mixing of the reactants. Heating and
cooling of the reaction mixture is achieved by
controlling the flows of two water streams (a hot and 
a cold water stream) at an appropriate temperature
through the reactor jacket.  The polymerisation
temperature is controlled by a cascade control system 
consisting of a primary PID and two secondary PI 
controllers. The reactor temperature is fed back to the 
primary controller whose output is taken as the set-
point  of the two secondary controllers. The
manipulated variables for the two secondary
controllers are hot and cold water flow rates. The hot 
and cold water streams are mixed before entering the 
reactor jacket and provide heating or cooling for the
reactor. The jacket outlet temperature is fed back to 
the two secondary controllers.
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Fig. 1. Schematic of pilot plant polymerization
reactor.

A detailed dynamic mathematical model of the
reactor covering reaction kinetics, heat and mass
balances has been described by Mourikas (1998).
This simulation model serves as a realistic test bed
for investigating parameter estimation.
 
The variables that potentially could be used for
estimation include: reactor temperature, jacket inlet
temperature, jacket outlet temperature, monomer
conversion, coolant flow rate and reaction time. In
this study it is assumed that monomer conversion and 
reactor and jacket temperatures are selected as the
available measurement set for the estimation
procedure. The measurements are corrupted by  white 
Gaussian noise with standard deviations of 0.1%,
0.1K and 0.1K respectively. The sampling rate is 1 
minute with batch duration being 120 minutes. 
 
 
3.1 Erroneous Initial Initiator Concentration and

Time-varying Initiator Decomposition Rate
 
Consider the case where two key parameters for the 
initiation reaction are incorrectly estimated, initiator
concentration and initiator decomposition rate
constant. The initiator concentration I  is represented 
by sIII 0=  with stochastic correction term sI , while 

the initiator decomposition rate constant dk  is

represented by s
corrddd gkk ,0=  with the stochastic

correction term s
corrdg , . 0I  and 0dk  are computed

from kinetic equations (Mourikas , 1998). sI and
s

corrdg , describe the variation associated with the

initiator concentration and initiator decomposition
rate constant respectively . If there is no model

mismatch then the calculated values sI and s
corrdg ,

will be equal to the actual values I  and dk , that is 

the parameters sI and s
corrdg , will be equal to unity.

Uniform prior and normal prior distributions were
formulated for the unknow parameters,

],[ ,
s

corrds gI=? :

 
]10,01.0[~)( Up iθ

]25.0,1[~)( Np iθ ; 2,1=i

(19)

 
Table 1 Parameter estimation results using different 

prior distributions and sizes of measurement data set.
 

Prior
Distribution

Data
set

Estimated
Value

Error

θθ−θ /)ˆ(

]10,01.0[U 10 0.725; 0.640 44.9%;28.9%

]25.0,1[N 10 0.659; 0.686 31.8%;23.7%

]10,01.0[U 70 0.502; 0.896 0.34%;0.43%

]25.0,1[N 70 0.543; 0.844 8.5%; 6.17%

]10,01.0[U 120 0.499; 0.901 0.26%;0.12%

]25.0,1[N 120 0.500; 0.900 0.02%;0.02%



The results in Table 1 illustrate the poor performance 
of the estimator when only 10 observations are used
to calculate the parameter estimates for both the
uniform and normal prior distributions. Since two
parameters are estimated simultaneously, the
complexity of the estimation accordingly increases.
The estimation errors for the unknown parameters
using a uniform prior distribution decrease
significantly  (Table 1) when the size of the
measurement set is increased to 70. In contrast, the
errors of the estimates using the normal prior
distributions are larger for the same data set size.
When the size of the measurement data set is
increased to 120, the errors for the unknown
parameters using both the normal and uniform prior
distribution are small thus indicating that both prior
distributions are appropriate.

Comparison of the results in this section illustrate
that when the prior information about the unknown
parameters is described by a uniform prior
distribution, the unknown parameters can be
estimated accurately using a small number of
samples. However for the normal prior distribution, a
larger sample size is needed to obtain estimates with
a level of accuracy comparable to that attained with
the uniform distribution.

3.2 Time-varying Termination Rate Constant
 
In this second study, process model mismatch is
introduced in the form of a time variation in a kinetic 
parameter. In practice, important kinetic parameters
such as tk , the termination rate constant, cannot be

determined accurately and may vary during the
polymerisation process. In this study, the termination 

rate constant is represented by s
corrtttt ggkk ,0= ,

where 0tk  is the rate constant, tg  is a diffusion

controlled function, which includes a number of
parameters that are often unknown. The stochastic

correction term s
corrtg ,  is used to account for the

imprecise knowledge of tg . In the model, a random 
walk is assumed for the behaviour of the stochastic

state.  In the process, the actual values of s
corrtg ,  are 

assumed to vary linearly from an initial value of 0.9
to 0.66. The time-varying parameter to be estimated

is set as s
tcorrtt g ,,=θ

 
It is assumed that the mean of the parameter, 0θ , is 
unity and the standard deviation is 0.05. Using
maximum entropy, the prior distribution of the
unknown parameter is )05.0,1(~)( 00, Np θθ .

According to the discussion in section 2.3, the prior 
distribution at time point t  is:

),(~)(, kkkk Np σµθθ

10 =θ =k ; 1−θ=µ kk ; 05.0=σk

(20)

 
 
Fig. 2. Estimation of the time-varying correction term 

for the termination rate constant.
 
The parameter is assumed to decrease linearly with
10% initial error whilst the parameter in the model is 
fixed at unity. The parameter estimate is shown in
Fig. 2. The Bayesian parameter estimator identifies
the starting value of the time-varying parameter and
follows the changes closely.

3.3 Time-varying Reactor Heat Transfer Coefficient
 
A common effect in polymerisation reactors is
reactor fouling. It is well known that the heat transfer 
coefficient is strongly correlated with the viscosity of 
the reacting mixture, which varies during the
polymerizat ion. Thus the reactor heat transfer
coefficient is an important parameter to monitor.
However, it is difficult to identify the overall heat 
transfer coefficient of the reactor wall.

 
Fig. 3. Estimation of the time-varying correction term 

for the heat transfer coefficient.
 
In this study, the heat transfer coefficient is
represented by sUUU 0= , where 0U  represents the 

experimental value of the heat transfer coefficient .

sU  is introduced as a stochastic correction term for 

the heat transfer coefficient. If there is no reactor
fouling, the stochastic correction term is equal to
unity. In this study, the heat transfer coefficient is
assumed to decrease. It is assumed that, at time point

0=t , the mean of the time-varying parameter, 
0θ , is 

unity and the standard deviation is 0.05. The prior
distribution of the time-varying parameter is:



),(~)(, kkkk Np σµθθ

10 =θ =k ; 1−θ=µ kk ; 05.0=σk

(21)

Fig. 3 shows that the Bayesian parameter estimator
can track the changes tightly for a time-varying heat 
transfer coefficient so that the impact of reactor
fouling can be identified and the model accordingly
updated.
 
 

4. CONCLUSIONS
 
This paper has presented a study on parameter
estimation based on Bayesian theory. A basic
Bayesian parameter estimation framework is derived
from Bayesian Maximum a Posteriori. A Bayesian
parameter estimator is constructed for unknown non
time-varying parameters, which use historical
measurements to update the model before
implementing the model for model based
optimisation and control. An on-line estimator was
then derived to deal with unknown time-varying
parameters.
 
Unlike conventional estimation methods, Bayesian
parameter estimation allows expert knowledge and
prior beliefs, in the form of a prior probability
distribution, to be formally incorporated into the
statistical analysis. The prior distribution summarises
all available information and expert opinion relating
to the parameter of interest before the data have been 
observed. All knowledge about the underlying
parameter is then contained in the posterior
probability distribution after observing the data. Thus
Bayesian methods use the information to get the best 
estimate.
 
The construction of a prior distribution and the data
set size affect the performance of the estimator.  The
impact of different prior distributions for the
estimation of the parameters is evaluated by applying
the method to a MMA process. It is shown that for a
small data set, constructing an appropriate prior
distribution is very important for parameter
estimation.

The estimation of time-varying parameter was also
evaluated. The simulation shows that the Bayesian
parameter estimator can estimate the initial error of 
the parameter and track the time-varying parameter
over the duration of the batch.

6. AKNOWLEDGMENTS

Zhen Lu acknowledges CPACT and the University of 
Newcastle for the financial support of his PhD and
Prof. Kiparissides, CPERI, Thessaloniki, for the
MMA reactor simulation. The authors acknowledge
the EU Research Training Network, BatchPro, No.
HPRN-CT-2000-00039.

REFERENCES
 
Achillas, D.S. and C. Kiparissides (1994). On the

validity of the steady state approximations in
high conversion diffusion-controlled free-radical
copolymersiations reactions. Polymer , 35(8), pp.
1714-1721,

Bastin, G. and D. Dochain (1986). On-line estimation 
of microbial specific growth rates. Automation,
22, pp. 705 – 709.

Gagnon, L. and J.F. MacGregor (1991). State
estimation for continuous emulsion
polymerization. Can. J. Chem. Eng., 69, pp. 648-
656.

Kozub, D.J. and J.F. MacGregor (1992). State
estimation for semi-batch polymerization
reactors. Chem. Eng. Sci., 47(5), pp. 1047-1061.

Kiparissides, C., G.P. Seferlis, G. Mourikas and A. J. 
Morris  (2002). On-line optimizing control of
molecular weight properties in a batch free
radical polymerization reactors, Ind. Eng. Chem.
Res., 41, pp. 61620-6131.

Mourikas, G. (1998). Modelling, estimation and
optimisation of polymerisation processes.  PhD
Thesis, University of Newcastle, England.

Muske, K.R. and J.B. Rawlings (1995). Non-linear
moving horizon state estimation. In: Berber R.
(Ed.), Methods of model based process control.
Netherlands: Kluwer Academic Publisher.

Narendra, K.S. and A.M. Annaswamy (1988). State
adaptive systems. NJ: Englewood Cliffs,
Prentice-Hall.

Robertson, D.G., Lee, J.H. and Rawlings, J.B.
(1996). A moving horizon-based approach for
least squares state estimation. AIChE. 42, pp.
2209-2224.

Scali, C., M. Morretta and Semino, C. (1997).
Control of the quality of polymer products in
continuous reactors: Comparison of performance
of state estimators with and without updating of 
parameters. J. Process Control. 7(5)  357-369.

Schuler, H. and Ch-U Schmidt (1992). Calorimetric
state estimators for chemical reactor diagnosis
and control: review of methods and applications.
Chem. Engng Sci., 47, pp. 899-915.

Sirohi, A. and K.Y. Choi (1996). On-line parameter
estimation in a continuous polymerization
process. Ind. Engng Chem. Res., 35, 1332-1343.

Thomas, I.M. and C. Kiparissides (1984).
Computation of the near-optimal temperature
and initiator policies for a batch polymerization
reactor. Can J Chem Eng 62 (2), pp. 284-296.

Yin, K.W. (1994). Parameter estimation and related
problems for external input-output models.
Chem. Engng Sci., 48, pp. 3870-3875.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



