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Abstract: Stiction is one of the most common problems in the spring-diaphragm type
control valves, which are widely used in the process industry. Although there have
been many attempts to understand and detect stiction in control valves, none of the
current methods can simultaneously detect and quantify stiction. There is thus a
clear need in the process industry for a non-invasive method that can not only detect
but also quantify stiction so that the valves that need repair or maintenance can be
identified, isolated and repaired. This work describes a method that can detect and
quantify stiction that may present in control valves using routine closed loop operating
data obtained from the process. No additional excitation or experimentation with the
plant is required. Over a dozen industrial case studies have demonstrated the wide
applicability and practicality of this method as an useful diagnostic aid in control-loop
performance monitoring.
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1. INTRODUCTION

A typical chemical plant has hundreds of con-
trol loops. The presence of oscillation in a con-
trol loop increases the variability of the process
variables thus causing inferior quality products,
larger rejection rates, increased energy consump-
tion, reduced average throughput and profitabil-
ity. Bialkowski (1992) reported that about 30% of
the loops are oscillatory due to control valve prob-
lems. In a recent study, Desborough and Miller
(2002) reported that control valve problems ac-
count for about a third of the 32% of controllers
classified as “poor” or “fair” in an industrial sur-
vey. If the control valve contains nonlinearities
such as stiction, backlash, and deadband, the
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valve output may be oscillatory which in turn can
cause oscillations in the process output. Among
the many types of nonlinearities in control valves,
stiction is one of the most common and long-
standing problems in process industry. Stiction
can easily be detected using invasive methods
such as the valve travel or bump test. But to
apply an invasive method across an entire plant
site is neither feasible nor cost-effective because
of the manpower, cost and time intensive nature
of the method. Although there have been many
studies (Taha et al., 1996; Wallén, 1997; Sharif
and Grosvenor, 1998; Gerry and Ruel, 2001) car-
ried out for invasive analysis of control valve
performance, only a few non-invasive methods
((Horch, 1999; Rengaswamy et al., 2001; Stenman
et al., 2003) have appeared in literature. Horch’s
method (Horch, 1999; Horch, 2000) detects stic-



tion with the use of the cross-correlation function
between pv and op. Horch’s method is successful
mainly in detecting valve stiction in flow control
loops. It can not be applied for loops involving
an integrator or those carrying compressible flu-
ids. The method described in Rengaswamy et. al.
(2001) depends on the qualitative shape of the
time trends of the data which is often distorted
by the presence of noise and disturbance. Also, in
real life the shape of the time trends of the data is
heavily affected by the process and controller dy-
namics. Stenman et. al. (2003) described a model
based segmentation method to detect stiction in
control valves. This method requires the model of
the process with a lot of tuning parameters. To
obtain the closed loop model of the process from
the routine operation data is very difficult. More-
over, all these methods can only detect stiction
but can not quantify it. As pointed out rightly in
(Desborough and Miller, 2002), a passive or non-
invasive method that can reliably and automati-
cally classify valve performance in closed loop is
“desperately needed in process industry”. An effec-
tive non-intrusive data-based monitoring method
could reduce the cost of control loop performance
maintenance by screening and short-listing those
loops and/or valves that need maintenance. This
work describes a data-based non-invasive method
that can detect and quantify stiction present in
control valves.

2. WHAT IS STICTION?

Different people or organizations have defined
stiction in different ways. Some of these definitions
have been presented in Choudhury et al. (2003a)
. Based on a careful investigation of real process
data a new definition of stiction was also proposed
by the authors (Choudhury et al., 2004) and
is summarized as following. It is observed that
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Fig. 1. Typical input-output behavior of a sticky
valve

the phase plot of the input-output behavior of a
valve “suffering from stiction” can be described by
figure 1. It consists of four components: deadband,

stickband, slip jump and the moving phase. When
the valve comes to a rest or changes the direction
at point A in figure 1, the valve sticks. After the
controller output overcomes the deadband (AB)
plus the stickband (BC) of the valve, the valve
jumps to a new position (point D) and continues
to move. Due to very low or zero velocity, the
valve may stick again in between points D and E
in figure 1 while travelling in the same direction
(EnTech, 1998). In such a case the magnitude of
deadband is zero and only stickband is present.
This can be overcome if the controller output
signal is larger than the stickband only. It is
usually uncommon in industrial practice. The
deadband and stickband represent the behavior
of the valve when it is not moving though the
input to the valve keeps changing. Slip jump
represents the abrupt release of potential energy
stored in the actuator chamber due to high static
friction into kinetic energy as the valve starts to
move. The magnitude of the slip jump is very
crucial in determining the limit cyclic behavior
introduced by stiction (Piipponen, 1996). Once
the valve slips, it continues to move until it
sticks again (point E in figure 1). In this moving
phase dynamic friction is present which may be
much lower than the static friction. Therefore,
“stiction is a property of an element such that its
smooth movement in response to a varying input
is preceded by a static part followed by a sudden
abrupt jump called the slip-jump. Slip-jump is
expressed as a percentage of the output span. Its
origin in a mechanical system 1is static friction
which exceeds the dynamic friction during smooth
movement”. This definition has been exploited in
the next and subsequent sections for quantifying
stiction in control valves. In the process industry,
stiction is generally measured as a % of the valve
travel or the span of the control signal (Gerry and
Ruel, 2001). For example, a 2 % stiction means
that when the valve gets stuck it will start moving
only after the cumulative change of its control
signal is greater than or equal to 2%. If the range
of the control signal is 4 to 20 mA then a 2%
stiction means that a change of the control signal
less than 0.32 mA in magnitude will not be able
to move the valve.

Note that it is difficult to estimate slip jump (‘j’)
from the controlled output (pv) and the controller
output (op) data because the slip jump in the
valve output is destroyed by the process dynamics.
This work will only quantify the parameter ‘s’
(deadband plus stickband) which will be termed
as the amount of stiction from this point forward.

3. DETECTION OF VALVE STICTION

In a control loop, nonlinearity may be present
either in the process itself or in the control valve.



For our current analysis, we are assuming that
the process nonlinearity is negligible in the steady
state operating region during which the data has
been collected. This is a reasonable assumption
because the method works with the routine op-
erating data of a control loop under regulatory
control. For a particular operating region of a
chemical plant, the plant is assumed to be locally
linear under its feedback configuration. This is
what makes linear controllers perform so well in
the chemical process industries.

This method first examines the presence of a
nonlinearity in a control loop. If a nonlinearity is
detected then the process variable (pv), set point
(sp) and controller output (op) signals are used to
diagnose the possible causes of nonlinearity. The
following section describes the method in brief.

3.1 Detection of Loop Nonlinearity

A control loop containing valve nonlinearities of-
ten produces non-Gaussian (e.g., a signal with
asymmetric distribution) and nonlinear time se-
ries, namely process output (pv) and controller
output (op). Higher order statistics based non-
linearity assessment can be used as a diagnostic
tool for troubleshooting of hardware faults that
may be present in control loop (Choudhury et
al., 2002; Choudhury et al., 2003). As described in
(Choudhury et al., 2003), the test of Gaussianity
and nonlinearity of the control error signal (sp-
pv) is a useful diagnostic aid towards determin-
ing the poor performance of a control loop. The
test described in Choudhury et al. (2003c) uses
the sensitivity of the normalized bispectrum or
bicoherence to detect the presence of nonlinear
interactions in a time series signal. A distinctive
characteristic of a non-linear time series is the
presence of phase coupling such that the phase
of one frequency component is determined by the
phases of others. Phase coupling leads to higher
order spectral features which can be detected in
the bicoherence of a signal. Bicoherence is defined
as:

|B(f1, f2)]?
[X(f)X()PIE[X(fL + f2)|(21})

bic*(f1, f2) £ 5

where B(f1, f2) is the bispectrum at frequencies
(f1,f2) and is given by

B(f1, f2) = EIX(F)X ()X (h + f2)], - (2)

X(f1) is the discrete Fourier transform of the
time series z(k) at the frequency f1, X*(f1) is
the complex conjugate and FE is the expectation
operator. A key feature of the bispectrum is that
it has a non-zero value if there is significant
phase coupling in the signal x between frequency
components at f; and fo. The bicoherence gives

the same information but is normalized as a value
between 0 and 1.

In (Choudhury et al., 2003), two indices - the Non-
Gaussianity Index (NGI) and the Non-Linearity
Index (NLI) - have been defined as

NGI 2 pic2 — bic2 it (3)
NLI2 | bic? oy — (bic? +20,:,) | (4)

where, bic? is the average squared bicoherence
and bic?,,,; is the maximum squared bicoherence,
0, is the standard deviation of the squared

bicoherence and bic2.,;; is the statistical thresh-
old/critical value obtained from the central chi-
square distribution of squared bicoherence. As
outlined in (Choudhury et al., 2003), if both in-
dices, NGI and NLI, are greater than zero, the
signal is described as non-Gaussian and nonlinear.
The details of the procedure are shown in figure
2. The test can be applied on any time series to
check its non-Gaussianity and non-linearity. For
a control loop, this test is applied on the error
signal (sp-pv) to the controller because the error
signal is more stationary than pv or op signal. If
the error signal is found to be non-Gaussian and
nonlinear, it is inferred that the loop in question
exhibits significant non-linearity. The nonlinearity
can be attributed to the control valve under the
following assumptions:

e The process is assumed to be locally linear.
e No nonlinear disturbance is entering the
loop.

3.2 Use of pv-op Plot

The long time practice in industrial studies has
been the use of pv-op plots for the detection of
valve problems, especially stiction. But experience
shows that this type of method is successful only
for a handful cases of flow control loops. The use
of pv-op plot for detecting valve problems was not
successful because it only takes into account the
qualitative trend information of the time series
which can be destroyed due to the presence of
process dynamics, noise dynamics, disturbances
and tightly tuned controllers. In our method, the
pv-op plot is used as a second step to diagnose
the valve nonlinearity problem. The detection of
valve or process nonlinearity is first carried out
using higher statistical method-based NGI and
N LI indices. Once a nonlinearity is detected, only
then the pv-op plot is used to isolate its cause.
Because of the contamination of real life data with
noise/disturbance, a pv- op plot is often unclear
and ambiguous, and it is difficult to find any
information from it. This necessitates the use of a
filter to clean the data.
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Fig. 2. Decision Flow Diagram of the methodology for the detection and diagnosis of valve problems

3.2.1. Data Filtering or Pre-processing  Upon
detection of a nonlinearity, the frequencies re-
sponsible for the significant nonlinear interactions
can be determined from the significant peaks in
the squared bicoherence plot. Then, a frequency
domain Wiener filter is used to obtain the part(s)
of the signal which contributes significantly to the
signal nonlinearity. Both pv and op are filtered
using a frequency domain Wiener filter. The de-
tailed filter design algorithm is given in Thornhill
et. al. (2003) . The frequency ranges for the filters
are selected from the inspection of the peaks in
the bicoherence plot. A segment of the data that
has regular oscillations is then used for the con-
struction of the pvs-opy plot ( the pvy and opy
are the filtered pv and op). If the pvs-ops plot
shows an elliptical pattern, it is diagnosed as a
signature of valve stiction, otherwise there is a
valve problem which is not due to stiction. In this
work, stiction is estimated as the maximum width
of the cycles of the pvs-ops plot along the op axis.
The quantified stiction is termed as “apparent
stiction” because the actual amount of stiction to
be obtained from the mwv-op plot may differ from
the estimated quantity because of the role of the
controller in attempting to regulate the process
variable.

4. QUANTIFYING STICTION

It is important to be able to quantify stiction
so that a list of sticky valves in order of their
maintenance priority can be prepared. The puvg-
opy plot along with any of the following two
methods can be used to quantify stiction in the
unit of op signal. Note that there is no need to
scale the data.

4.1 Using a fitted ellipse

An ellipse in the least square sense can be fitted to
the pvs-opy plot and can be used for quantifying
stiction. Since apparent stiction is defined as the
maximum width of the ellipse along the op axis,
the distance between two points lying on the
intersections of the ellipse and a line parallel to
the op axis and passing through the center of the
ellipse will be the amount of stiction present in
the loop. If m and n are the length of the major
and minor axes of the fitted ellipse respectively,
and « is the angle of rotation of the ellipse, the
amount of stiction (length of AP in figure 3(e))
can be obtained using the following expression

2
stiction = AP = mn (5)
V/(m? sina + n? cosa)

4.2 Clustering Technique

Clustering is a method for dividing scattered
groups of data into several groups. Since the pv-
op plot for a control loop with a sticky valve
exhibits elliptic patterns, the data corresponding
to a narrow strip along the mean of pv and par-
allel to the op axis can be collected (see figure
3(d)) and used for quantifying stiction with the
help of c-means clustering technique (Johnson and
Wichern, 1998). The amount of stiction can be
estimated from the absolute value of the differ-
ence between x co-ordinates of the centers of the
two clusters. If the final centers of the clusters
are (op1,pv1) and (opa, pvs), then the amount of
stiction is obtained using the following expression:

stiction = |op; — opa| (6)
5. AN ILLUSTRATIVE EXAMPLE

The objective of this section is to explain the var-
ious steps of the proposed method with a detailed
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Fig. 3. Results of a level control loop data analysis

presentation of an industrial example. This exam-
ple represents a level control loop in a power plant,
which controls the level in a condenser located at
the outlet of a turbine by manipulating the flow
rate of the liquid condensate from the condenser.
Figure 3(a) shows the time trends for level (pv),
set point (sp) and the controller output (op).
The loop shows oscillatory behavior. 4096 data
points were used for the bicoherence calculation
and figure 3(b) shows the squared bicoherence
plot corresponding to the controller error signal
(sp-pv). The values of NGI and N LI were found
to be 0.04 and 0.61, respectively, indicating the
presence of significant loop nonlinearity. To iso-
late the nonlinearity, the pv-op plot is found to
be useful. Figure 3(c) demonstrates the c-means
clustering technique used in quantification of the
stiction. The points denoted with empty and filled
diamonds are the initial and final centers of the
clusters, respectively. This method quantifies the
amount of stiction in this loop as 11.3%. Figure
3(e) shows the ellipse fitting technique and the
amount of stiction estimated using this method is
11.40%. Both methods have produced identical re-
sults with practically tolerable limits of deviation
from each other.

Validation of the Results of the Illustrative
Example: Once the results of our analysis was
sent to the plant people, plant engineers confirmed
that this loop was suffering from stiction. For this

Table 1. Results for Industrial Loops

Loop | Loop | NGI | NLI | Apparent Stiction %
No. Type c-means ellipse

1 Level 0.08 0.44 9.3 8.7

2 Level 0.10 0.40 4.2 4.3

3 Level | -0.02 — — —

4 Flow 0.01 0.55 0.35 0.33

5 Flow 0.05 0.59 0.42 0.42

6 Temp | 0.003 | 0.19 1.00 1.14

loop, the valve positioner data was made available.
Figure 3(f) shows the actual valve position (mv)
vs. controller output (op) plot. This plot clearly
shows that the valve was sticking during the
change of its direction. From this plot, the amount
of stiction can be estimated as 11.25% which is
in agreement with the results obtained from the
proposed methods.

6. INDUSTRIAL CASE STUDIES

The objective of this section is to evaluate the
proposed method on a number of selected con-
trol loop data obtained from different types of
process industries. For each loop, the set point
(sp), controlled output (pv) and controller output
(op) data were available. Unless otherwise stated,
a data length of 4096 was used for the squared
bicoherence calculation for each case. The numer-
ical results for all loops are provided in table 1.
Due to space limitations, it is not possible to in-
clude figures for these examples. These data were
analyzed before the prior knowledge of the control
valve problems and the results of the analysis were
confirmed later by the plant personnel.

e Loops 1 and 2: These loops are also level
control loops in the same power plant de-
scribed in the illustrative example. They also
control the level of condensers located at the
outlet of two different turbines by manipu-
lating the flow rate of the liquid condensate.
Both c-means clustering and fitted ellipse
techniques provide the amount of stiction
approximately as 9% for loop 1 and 4% for
loop 2.

e Loop 3: This is another level control loop
in the same power plant described in the
illustrative example. It also controls the level
of a condenser located at the outlet of a
different turbine by manipulating the flow
rate of the liquid condensate. The magnitude
of NGI was -0.02, clearly indicating that
nonlinearity is not a problem for this loop.
From the valve positioner (mwv) vs. controller
output (op) plot (figure 4) it is obvious that
the valve shows a linear response.

e Loops 4 and 5: These are flow control
loops obtained from a refinery. The results
of the analysis of these loops are given in
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Fig. 4. Valve positioner vs. controller output plot
for loop 3

the fourth and fifth rows of the table 1. The
presence of small amount of stiction (0.35%
for loop 3 and 0.4% for loop4) was causing
large oscillations in these loops.

e Loop 6: It describes a temperature control
loop on a furnace feed dryer system at the
Tek-Cominco mine plant, BC, Canada. The
temperature of the dryer combustion cham-
ber is controlled by manipulating the flow
rate of natural gas to the combustion cham-
ber. The results are presented in the sixth
row of table 1. The amount of stiction found
in this loop was approximately 1%.

7. CONCLUSIONS

A non-invasive method for detecting and quantify-
ing stiction in control valve has been presented in
this paper. The method first detects nonlinearity
in a control loop by the use of the sensitivity of the
normalized bispectrum or bicoherence to the non-
linear interactions among various frequency com-
ponents of the control error signal. If nonlinearity
is detected, pv and op signals are filtered using a
frequency domain Wiener filter to obtain filtered
pvy and opy signals. If an ellipse can be fitted
suitably to the pvs-ops plot, then it indicates a
signature of valve stiction. C-means clustering or
fitted ellipse techniques can be used for automatic
quantification of stiction. The method has been
extensively evaluated on simulated as well as in-
dustrial data sets.
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