
FAULT DETECTION AND ISOLATION IN

NON-UNIFORMLY SAMPLED SYSTEMS

Weihua Li and Sirish Shah 1

Department of Chemical and Materials Engineering

University of Alberta, Edmonton, AB, T6G 2G6, Canada

Abstract: This paper considers fault detection and isolation (FDI) in a non-uniformly
sampled multirate system. By extending the Chow-Willsky scheme from single rate
systems to multirate systems, one generates a primary residual vector (PRV) for fault
detection. Further, by structuring the PRV to have different sensitivity/insensitivity
to different faults, fault isolation is performed. The power of the proposed FDI scheme
is illustrated via numerical examples. Copyright c©2004 IFAC.

Keywords: non-uniformly sampled multirate multivariate systems, fault detection
and isolation, primary residual vector, structured residual vectors

1. INTRODUCTION

This work proposes a novel approach towards
fault detection and isolation (FDI) in a non-
uniformly sampled multirate multivariate system.
A dynamic discrete-time (DT) system is referred
to as multirate wherein variables are sampled with
different rates. Further, the sampling is called
uniform/non-uniform if a variable is sampled with
equally/non-equally spaced intervals.

Multirate systems are common in the process in-
dustries. In many cases, sampling all variables in
a process at a single rate is not possible, because
of delays in sensors and laboratory analysis. Re-
cently, research effort has shifted to FDI in mul-
tirate systems. Studies by Fadali and co-workers
(Fadali and Liu, 1999; Fadali and Shabaik, 2002)
consider processes where all variables are uni-
formly (or regularly) sampled with different rates.
This paper considers FDI in a more general case:
each variable in a continuous-time (CT) dynamic
system is non-uniformly (or irregularly) sampled
with a different rate. This represents a very gen-
eral starting point. All other systems are sub-
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sets of this case. There is a lack of formal FDI
methodology for this general case, to our best
knowledge.

When sampling a CT system with different rates,
the lifting technique can be used to convert the
time-varying multirate DT system into a single
rate time-invariant DT system (Khargonekar et

al., 1985). Consider a CT system represented
by the state space model. We utilize the non-
uniformly sampling technique (Sheng et al., 2002)
to lift the system. Then we extend the Chow-
Willsky scheme (Chow and Willsky, 1984) to the
lifted system to generate a primary residual vector
(PRV) for fault detection. Furthermore, the PRV
is transformed into a set of structured residual
vectors (SRVs) for fault isolation. Eventually, the
practicality and utility of the proposed FDI algo-
rithms is illustrated by application to two numer-
ical examples.

2. PROBLEM FORMULATION

Consider a dynamic system, which in the fault-

free case is represented by the following CT state
space equation



ẋ(t) = Ax(t) + Bũ(t) + φ(t)

ỹ(t) = Cx(t) + Dũ(t) (1)

where (i) ũ(t) ∈ ℜl and ỹ(t) ∈ ℜm are noise-free

inputs and outputs, respectively; (ii) x(t) ∈ ℜn is
the state; (iii) φ(t) ∈ ℜn is the disturbance and
can be any function of time; and (iv) A, B, C and
D are known system matrices with appropriate
dimensions.

Given a frame period T , throughout the paper
we sample the variables in the following manners
(Sheng et al., 2002):

• ũ(t) is sampled g times over the period
[kT, kT + T ) at instants: {kT + t1, kT +
t2, · · · , kT +tg}, where 0 = t1 < · · · < tg < T .

• ỹ(t) is sampled p times over the same period.
Within [kT + ti, kT + ti+1], ∀ i ∈ [1, g], ni

(≥ 0) samples are taken at instants: {kT +
t1i , · · · , kT + tni

i }. Similarly, ti ≤ t1i · · · <
tni

i < ti+1, where tg+1 = T and p = n1 +
· · · + ng.

Among the variables of the system represented by
Eqn. 1, each one can be sampled differently from
the others. However, for simplicity of mathemati-
cal manipulation, in the sequel we assume that (i)
the inputs and the disturbances are sampled in
one manner; and (ii) the m outputs are sampled
in a different manner.

We consider the case of errors-in-variables (EIV).
Accordingly, we denote the observed fault-free

inputs at kT + ti, ∀ i ∈ [1, g], by u∗(kT + ti) =
ũ(kT + ti) + v(kT + ti). Similarly, at kT + tji ,
∀ j ∈ [1, ni], the fault-free outputs are y∗(kT +
tji ) = ỹ(kT + tji ) + o(kT + tji ). We assume v( )
and o( ) to be independently Gaussian distributed
white noise vectors having respective covariances
Rv and Ro.

If the sensors are faulty, the measured outputs,
∀ j ∈ [1, ni], can be represented by y(kT + tji ) =

y∗(kT +tji )+Ξyfy(kT +tji ), where Ξy ∈ ℜm×dy is

a matrix of fault directions; and fy(kT +tji ) ∈ ℜdy

are fault magnitude vectors. To represent a single
sensor fault in the ith output sensor, ∀ i ∈ [1,m]
(dy = 1), Ξy ∈ ℜm is simply the ith column of the
m×m identity matrix Im. It must be emphasized
that Ix always refers to an x × x identity matrix
throughout the paper.

The sampled inputs are similarly represented by
u(kT + ti) = u∗(kT + ti) + Ξufu(kT + ti), where
Ξu ∈ ℜl×du and fu(kT + ti) ∈ ℜdu resemble Ξy

and fy(kT + tji ), respectively.

With {u(kT + ti)} and {y(kT + tji )}, ∀ i ∈ [1, g],
j ∈ [1, ni], and k = [1, · · ·), the goal of FDI is to
indicate when fu(kT + ti) and/or fy(kT + tji ) are
non-zero; and further identify Ξu and/or Ξy.

3. NON-UNIFORMLY SAMPLED SYSTEMS

Post-multiplying Eqn. 1 by a non-singular e−At,
∀ t 6= 0, leads to

d
[

e−Atx(t)
]

/dt = e−At [Bũ(t) + φ(t)] (2)

Integrating Eqn. 2 gives

x(k + 1) =

kT+T
∫

kT

eA(kT+T−t) [Bũ(t) + φ(t)] dt

+ A x(k) (3)

where x(k) ≡ x(t)|t=kT , x(k + 1) ≡ x(t)|t=kT+T ,
and A ≡ eAT . Consequently, the following lifted
state space equation can be derived,

x(k + 1) = A x(k) + B ũ(k) + E φ(k) (4)

where, ∀ i ∈ [1, g], B = [B1 B2 · · · Bg], and
E = [E1 E2 · · · Eg] with

Bi =

T−ti
∫

T−ti+1

eAtBdt, Ei =

T−ti
∫

T−ti+1

eAtdt,

ũ(k) =







ũ(kT + t1)
...

ũ(kT + tg)






; φ(k) =







φ(kT + t1)
...

φ(kT + tg)






.

It is arguable that φ(k) is not available. As will
be shown later, φ(k) will be entirely removed from
the PRV.

The integration of Eqn. 2 from t ∈ [kT, kT + τ ],
∀ 0 < τ < T , can result in x(kT + τ), whose
substitution into Eqn. 1 leads to

ỹ(kT + τ) = C

kT+τ
∫

kT

eA(kT+τ−t) [Bũ(t) + φ(t)] dt

+ CeAτx(k) + Dũ(kT + τ)

After defining the lifted output vector:

ỹ(k) ≡



























ỹ(kT + t11)
...

ỹ(kT + tn1

1 )
...

ỹ(kT + t1g)
...

ỹ(kT + tng

g )



























∈ ℜmp,

one can arrive at the following lifted output equa-
tion:



ỹ(k) = C x(k) + D ũ(k) + J φ(k) (5)

where, C =
[

C′

1 C′

2 . . .C′

g

]′
with ′ symbolizing

the transpose of the argument;

D =













D1,1 0 . . . 0

D2,1 D2,2 0
...

...
. . .

Dg,1 Dg,2 Dg,3 . . . Dg,g













;

and J = D|Di1,i2
=Ji1,i2

with i1 ∈ [1, g] and
i2 ∈ [1, i1]. Note that in the preceding matrices,

Ci =













CeAt1i

CeAt2i

...

CeAt
ni
i













, Di,i =

























C

t1i
∫

0

eAtBdt + D

...

C

t
ni
i

∫

0

eAtBdt + D

























,

Di,j = [

t1i−tj
∫

t1
i
−tj+1

(

CeAtB
)′

dt · · ·

t
ni
i

−tj
∫

t
ni
i

−tj+1

(

CeAtB
)′

dt]′,

and Ji,i = Di,i|B=In,D=0, Ji,j = Di,j |B=In
, ∀

j ∈ [1, i − 1]. The detailed derivation of Eqns.
4 and 5 can be seen in Sheng et al. (2002).

Combining Eqns. 4 and 5 eventually leads to

x(k + 1) = A x(k) + B ũ(k) + E φ(k)

ỹ(k) = C x(k) + D ũ(k) + J φ(k) (6)

which is the lifted model of Eqn. 1 when non-
uniformly sampled.

4. FAULT DETECTION

4.1 Description of the lifted system with faults

We define a stacked vector:

ỹ
s
(k) ≡ [ỹ′(k − s) ỹ′(k − s + 1) . . . ỹ′(k)]′,

where s is the order of the parity space (Chow
and Willsky, 1984). We select s = n for simplic-
ity. In the sequel, any stacked vector is defined
analogously to ỹ

s
(k). Manipulating Eqn. 6 gives

ỹ
s
(k) = Γsx(k − s) + Hsũs(k) + Gsφs

(k) (7)

where ũs(k) and φ
s
(k) are also stacked vectors,

Γs = [C
′

A
′

C
′

. . . (As)
′

C
′

]
′

∈ ℜmp(s+1)×n;

Hs =













D 0 . . . 0

C B D
...

...
. . .

C As−1B C As−2B . . . D













;

and Gs = Hs|B=E,D=J.

It follows from u(k) and y(k) that the lifted
vectors of measured inputs and outputs are

u(k) = ũ(k) + v(k) + Ξg
ufu(k)

y(k) = ỹ(k) + o(k) + Ξp
yfy(k) (8)

where, v(k) = ũ(k)|ũ()=v(), fu(k) = ũ(k)|ũ()=fu(),
o(k) = ỹ(k)|ỹ()=o(), and fy(k) = ũ(k)|ũ()=fy(). In
addition, Ξg

u ≡ Ig ⊗ Ξu; Ξp
y ≡ Ip ⊗ Ξy; and ⊗ is

the Kronecker tensor product.

Stacking Eqn. 8 facilitates the relationship be-
tween the stacked vectors:

us(k) = ũs(k) + vs(k) + Ξg
s,ufs,u(k)

y
s
(k) = ỹ

s
(k) + os(k) + Ξp

s,yfs,y(k) (9)

where Ξg
s,u = Is+1 ⊗ Ξg

u, Ξp
s,y = Is+1 ⊗ Ξp

y.
Moreover, using Eqn. 9 can rewrite Eqn. 7 as

y
s
(k) − Hsus(k) = Γsx(k − s) − Hsvs(k) + os(k)

−HsΞ
g
s,ufs,u(k) + Ξp

s,yfs,y(k) + Gsφs
(k) (10)

4.2 Design of the PRV for fault detection

We select a matrix W0 from the left null space

(LNS) of ΓG
s ≡ [Γs Gs]. By extending the Chow-

Willsky scheme (Chow and Willsky, 1984), pre-
multiplying both sides of Eqn. 10 by W0, we
obtain the PRV as follows,

es(k)≡W0

[

y
s
(k) − Hsus(k)

]

(11)

= W0

[

Ξp
s,yfs,y(k) − HsΞ

g
s,ufs,u(k)

]

+ e∗s(k)

where the unknown state vector x(k − s) and the
lifted disturbance φ

s
(k) have been completely de-

coupled. Besides, e∗s(k) = W0 [−Hsvs(k) + os(k)],
which is a zero-mean Gaussian distributed ran-
dom vector with covariance Rs,e (Johnson and
Wichern, 1998), i.e. es(k) ∼ ℵ(0,Rs,e).

• In the ideal case, es(k) = 0, because os(k) =
0, vs(k) = 0, fs,u(k) = 0, and fs,y(k) = 0.

• In the fault-free case, es(k) = e∗s(k).
• In the presence of any sensor faults,

es(k) = e∗s(k) + ef
s (k) (12)

where



ef
s (k) = W0

[

Ξp
s,yfs,y(k) − HsΞ

g
s,ufs,u(k)

]

is the fault contribution. In this case, es(k) ∼
ℵ(ef

s (k),Rs,e).

Therefore, fault detection is equivalent to check-
ing if es(k) is zero-mean. This can be done by
testing if ηs(k) = e′s(k)R−1

s,ees(k) follows a central
chi-square distribution with degrees of freedom
equal to Rank(W0) (Johnson and Wichern, 1998).
With a pre-selected level of significance α, while
ηs(k) < χ2

α[Rank(W0)] indicates that all sensors
function normally, ηs(k) ≥ χ2

α[Rank(W0)] trig-
gers alarming of any faulty sensors.

Finally, we investigate the calculation of W0. We
define Rank(W0) ≡ (mp−ng)(s+1)−n and will
use this quantity in the sequel. It can be proved
that W0 has Rank(W0) independent rows and
Rank(W0) > 0 if mp > ng and s = n. Therefore,
a non-trivial solution to W0 can exist.

Denote H̃s ≡ [Imps+mp | − Hs]. Then, it follows

from Eqn. 11 that es(k) = W0H̃s

[

y′

s
(k) u′

s(k)
]′

.

es(k) should have maximized sensitivity with any
sensors. In line with this criterion, it comes from
(Li and Shah, 2002) that

W′

0 = the largest eigenvectors of ΓG,⊥
s H̃sH̃

′

s

related to non-zero eigenvalues,

where ΓG,⊥
s = Imps+mp−ΓG

s

[

(

ΓG
s

)′

ΓG
s

]−1
(

ΓG
s

)′

.

We consider the isolation of a single faulty sensor
at each time. Since the considered system has l
inputs and m outputs, the goal of isolation is
achievable by generating (m + l) SRVs, where
the ith SRV is made insensitive to the ith sensor
fault but most sensitive to other sensor faults,
∀ i ∈ [1,m + l].

Mathematically, since the ith SRV is

rs,i(k) = Wies(k) (13)

designing a set of SRVs is equivalent to computing
(m + l) transformation matrices Wi.

Introduce a new notation Ps ≡ W0H̃s. Conse-

quently, es(k) = Ps

[

y′

s
(k) u′

s(k)
]′

, and it follows

from Eqn. 13 that rs,i(k) = WiPs

[

y′

s
(k) u′

s(k)
]′

.

Note that Rank (Ps) = Rank (W0).

Denote, ∀ i ∈ [1,m] and j ∈ [1, l],

y
s
(k, i) ≡







y(k − s, i)
...

y(k, i)






,us(k, j) ≡







u(k − s, j)
...

u(k, j)






,

where

y(k, i) =



























y(kT + t11, i)
...

y(kT + tn1

1 , i)
...

y(kT + t1g, i)
...

y(kT + tng

g , i)



























∈ ℜp

and u(k, j) = [u(kT + t1, j) · · · u(kT + tg, j)]
′
.

Note that y(kT + τ, i) and u(kT + µ, j) rep-
resent the ith element of y(kT + τ) for τ ∈
[t11, · · · , t

n1

1 , · · · , t1g, · · · , t
ng

g ], and the jth element of
u(kT + µ) for µ ∈ [t1, · · · , tg], respectively.

We re-organize y
s
(k) and us(k) as follows,

y
s
(k) =







y
s
(k, 1)
...

y
s
(k,m)






, us(k) =







us(k, 1)
...

us(k, l)






.

As a consequence, columns in Ps must be re-
grouped such that the first ps + p columns cor-
respond to y

s
(k, 1), the second ps + p columns to

y
s
(k, 2), and so forth.

We use Ps,i to represent those columns in Ps

associated with y
s
(k, i) if i ∈ [1,m]; or us(k, i−m)

if i ∈ [m + 1,m + l]. Since rs,i(k) is designed to
be insensitive to y

s
(k, i), WiPs,i = 0 must be

ensured.

Moreover, each Wi must have a maximum co-
variance with Ps. The algorithms of calculating
W0 can be directly applied to calculating Wi, if

replacing H̃sH̃
′

s by PsP
′

s and ΓG
s by Ps,i.

It follows from Eqns. 12 and 13 that

rs,i(k) = r∗s,i(k) + r
f
s,i(k) (14)

where r
f
s,i(k) = Wie

f
s (k), and r∗s,i(k) = Wie

∗
s(k).

From the distribution of e∗s(k), it is known that
r∗s,i(k) ∼ ℵ (0,Rs,i), where Rs,i = WiRs,eW

′

i.

In addition, rs,i(k) ∼ ℵ (0,Rs,i) if the ith sensor
is faulty according to the selected isolation logic;

and rs,i(k) ∼ ℵ
(

r
f
s,i(k),Rs,i

)

once the jth (j 6= i)

sensor is faulty. Therefore, if rs,i(k) is zero-mean,
∀ i ∈ [1,m + l], but rs,j(k) is non-zero mean ∀
{j 6= i}

⋂

{j ∈ [1,m + l]}, we conclude that the
ith sensor has failed.

We can also use a scalar statistic ηs,i(k) =
r′s,i(k)R−1

s,i rs,i(k) as a fault isolation index. We

can conclude that the ith sensor is faulty, if ηs,i(k)
is less but ηs,j(k) is larger than a pre-determined
confidence limit.



5. NUMERICAL EVALUATION

A quadruple tank system (Ge and Fang, 1988),
where tanks with the same height and same cross
section are serially connected by outlets that
have an identical cross section. In the system,
the input is the water flowing into Tank 1, and
the controlled variables are the levels x(t) =
[x1(t) x2(t) x3(t) x4(t)]

′ in Tanks 1 up to 4,
respectively.

The dynamics of the system can be described by
the following CT state space model :

ẋ(t) = Ax(t) + Bũ(t)

ỹ(t) = Cx(t) (15)

where besides x(t), ỹ(t) ∈ ℜ4 is the output vector,

A =









−0.0457 0.0457 0 0
0.0457 −0.0914 0.0457 0

0 0.0457 −0.0914 0.0457
0 0 0.0457 −0.0914









,

B =
[

0.0020 0 0 0
]′

, and C = I4.

In accordance with Ge and Fang (1988), the noise-
free and fault-free input to the tank system is
simulated by ũ(t) = 1 + 0.36sin(t).

With such an input, we use the function ‘ode45’
in MATLABTM to simulate Eqn. 15, generating
the CT signals {ỹ(t), ũ(t)}.

Select a frame period T = 0.5 minute. For k =
[0, 1, · · ·), within the period [kT, kT+T ] we sample
ũ(t) at t = kT and t = kT+0.2; and ỹ(t) at t = kT
and t = kT + 0.3, respectively; resulting in

ũ(k) =

[

ũ(kT )
ũ(kT + 0.2)

]

, ỹ(k) =

[

ỹ(kT )
ỹ(kT + 0.3)

]

.

Applying ũ(k) and ỹ(k) to Eqn. 6 gives us the
lifted system model, A, B, C, D, E, and J. Since
there are 5 sensors in total, we generate 5 SRVs
for fault isolation. We calculate the models for the
PRV and 5 SRVs, respectively.

We introduce Gaussian distributed white noise to
ũ(k) and ỹ(k) to produce 1000 samples of training
data that are used to estimate Rs,e and Rs,i.
Given α = 0.01, the confidence limit of ηs(k) is
χ2

0.01(36) = 58.5713. In addition, the confidence
limit for each ηi

s(k) is χ2
0.01(26) = 45.6420, ∀ i ∈

[1, 5]. We define the scaled FDI indices, η̄s(k) ≡
ηs(k)/58.5713 and η̄i

s(k) ≡ ηi
s(k)/45.6420, all of

which have a confidence limit, 1, and will be
plotted to show FDI results.

A drift fault simulated by (t − tf )/500, where
tf is the time at which the fault begins to oc-
cur, is introduced to one sensor at t = tf =

501 ∗ T = 205.5 minutes. The FDI results are
depicted in Figure 1, where in the x-axis each
sample represents 0.5 minute. In addition, Fd
represents η̄s(k), and {Fi1, · · · , F i5} represents
{ η̄1

s(k), · · · , η̄5
s(k)}, respectively.

Fd is beyond 1 after the occurrence of the fault, in-
dicating the success of fault detection. Moreover,
since Fi1 (< 1) is unaffected by the fault, while
{Fi2, F i3, F i4, F i5} (> 1) have been affected by
the fault, one infers that the first output sensor
has a fault. Notice that there is a delay in fault
detection, because a drift fault evolves with time
very slowly.

5.1 Comparison with single rate FDI schemes

We use another quadruple tank system (Johans-
son, 2000) as a benchmark to conduct compara-
tive study among the newly proposed multirate
FDI scheme and the standard single rate one.
Detailed description of the tank system can be
found in the reference mentioned above.

The dynamics of the tank system around an op-
erating point can be represented by the following
CT state space equations (Johansson, 2000):

ẋ(t) =









−0.016 0 0.042 0
0 −0.011 0 0.033
0 0 −0.042 0
0 0 0 −0.033









x(t)

+









0.083 0
0 0.063
0 0.048

0.031 0









u(t), y(t) = 0.5I4x(t) (16)

where in x(t), its ith element, xi(t) for i ∈
[1, 4], represents the variation of the level in the
ith tank. Similarly, in y(t), its ith element yi(t)
represents the measured level variation in the
ith tank. The inputs to the system are voltages
applied to two pumps which provide water to the
four tanks. We simulate the inputs by pseudo
random binary signals with small magnitude. The
frequency bands for the frequency contents of
the inputs are chosen to be [0,0.03], and [0,0.05],
expressed in fractions of the Nyquist frequencies.

In the second tank system, there are 6 sensors
in total. Accordingly, 1 PRV and 6 SRVs are
generated for FDI. Furthermore, from the PRV
and SRVs, the related FDI indices are calculated
and scaled to have unit confidence limit. Similarly,
the ith fault isolation index is made insensitive to
fault in the ith sensor but most sensitive to faults
in any other sensors.

Comparative studies are conducted among (a)
FDI using multirate data; and (b) FDI using a low



single rate data, where different types of faults in
different sensors are simulated.

A complete failure was introduced to one sensor.
We sampled the two inputs with a sampling in-
terval of 1 minute and the four outputs with a
sampling interval of 2 minutes. The corresponding
FDI results are shown in Figure 2, where Fd and
{Fi1, · · · , F i6} are similar to those in Figure 1.
Figure 2 shows that the faulty sensor has been
successfully detected and isolated.

Furthermore, we sample the inputs and outputs
with an identical sampling interval of 2 minutes,
and then perform FDI on the data collected with
a slower rate. The relevant FDI results are demon-
strated in Figure 3. Apparently, the FDI per-
formance in this case is much worse compared
with that illustrated in Figure 2. This would be
expected since we are now downsampling the data
and thus ignoring potentially useful information.

6. CONCLUSION

A novel approach to detection and isolation of
sensor faults in non-uniformly sampled multirate
dynamic systems has been proposed. This ap-
proach has been applied to a simulation exam-
ple, where different types of faults including bias,
drift, and precision degradation, are introduced to
sensors, respectively, and are successfully detected
and isolated.

Comparative studies have also been carried out
via another quadruple tank system. It has been
verified that multirate data-based FDI outper-
forms the slow single rate data-based FDI.
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Fig. 1. A fault in the 1st tank system is successfully

detected and isolated with multirate data.
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Fig. 2. A fault in the second tank system is successfully

detected and isolated with multirate data.
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isolate the fault in the second tank system.
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