
USE OF BIFURCATION ANALYSIS FOR MODEL IDENTIFICATION PURPOSES 
 

Vega, M.P., Coimbra, K.B., Araújo, J.M. and Scheid, CM. 
 

Departamento de Engenharia Química - Universidade Federal Rural do Rio de Janeiro, BR 465, km7 – CEP: 
23890-000 – Seropédica – RJ – Brasil 

 
 
Abstract: Nonlinear system identification poses challenging questions because a closed general theory is not 
available for this field. Particularly, models based on neural networks may present incompatible general 
process behavior, leading to improper closed loop responses, even when they allow a satisfactory one step 
ahead prediction of process dynamics, as required by traditional validation methods. It is shown here that 
performing detailed bifurcation and stability analysis may be very helpful for the adequate analysis of neural 
models. The study of the many parameters that are defined a priori during the training of the neural network is 
of paramount importance, as the spurious dynamic behavior is related mostly to the use of incomplete data 
sets during the learning process. Strategies to improve the quality of the identification procedure are provided 
and analyzed, using cyclones as a case study. 
 
Keywords: Neural networks, Stability analysis, Bifurcation diagram, Cyclones 
 
 
 

1. INTRODUCTION 
 
When all the important characteristics of the 
process are known, building a phenomenological 
model is normally an easy task. However, 
difficulties may emerge during the solution of the 
resulting system of equations. For this reason, a 
number of different model reduction techniques 
have been proposed in the literature, Benallou et 
al. (1986); Pinto et al. (1988); Levine et al. 
(1991). 
Empirical linear modeling, Luyben (1990), is well 
studied but, as pointed out by Pearson et al. 
(1997), a well-developed theory for nonlinear 
system identification is not available. The neural 
network (NN) approach has proved to be a useful 
tool and is the most popular framework for 
empirical model development, although 
estimating the huge number of parameters 
frequently present in the model may be regarded 
as a major problem to be solved, Su et al. (1997) 
and Cybenko (1989). 
Nonlinear system identification involves model 
parameters selection, determination of the forcing 
function which is introduced into the plant to 
generate the output response, estimation of model 
parameters and comparison of plant information 
and model predictions for data not used in model 
development. All steps represent very challenging 
theoretical and practical problems, for a general 
theory is not available. As a result, further 
investigation on systematic techniques for 
nonlinear model validation, characterization of the 
amount and type of process data required to build 

nonlinear empirical models with satisfactory 
predictive capability and the identification of 
nonlinear model structures which are capable of 
capturing a wide variety of process behaviors are 
future research issues that need to be explored. 
The main objective of this paper is building a 
methodology for the analysis of NNs, which allow 
the development of confident model identification 
procedure for use in the laboratory and industrial 
environment. NNs were validated in terms of the 
traditional methods, Pollard et al. (1992) and 
Sriniwas et al. (1995), and in terms of their 
complex static and dynamic behavior, using 
bifurcation and stability analysis. As observed 
through many examples, Vega (2001), the use of 
traditional validation tests is not enough to 
guarantee successful use of NNs, as the complex 
dynamic behavior displayed by the model may be 
completely different from the one displayed by 
the plant, resulting in poor identification 
efficiency. Good identification performance can 
be detected using bifurcation diagrams, which can 
be computed with typical numerical packages, 
such as AUTO, Doedel (1986). It is proposed here 
that standard bifurcation analysis be used as an 
additional validation procedure for 
implementation of NN models. In order to 
illustrate this point, big and small cyclones, 
separating solid particles from gases, are taken as 
a case study. Bifurcation techniques are used to 
allow the development of confident NNs, based 
on experimental data. Experimental data are 
obtained elsewhere, Halasz et al. (2000). It is 
shown that the bifurcation analysis of NNs may be 
very helpful for the appropriate development and 



implementation of model identification. 
Therefore, bifurcation analysis should be included 
as an innovative validation criterion in the 
nonlinear system identification methodology. 
 

2. THE PROCESS ANALISED 
 
A cyclone is a particle removal device without 
moving parts which spins a gas stream to collect 
entrained particles by centrifugal force. Figure 1 
shows a typical cone-under-cylinder cyclone 
design. In this design, particle-laden gas enters the 
cyclone at the top of the cylinder and makes 
several revolutions due to the shape of the entry 
forming a vortex with a high tangential velocity 
which accelerates particles outward to the wall for 
collection. Below the bottom of the gas exit tube, 
the spinning gas gradually migrates inward, to a 
central core axially along the cylinder centerline, 
and from there up, finally out to the exit tube. 
Cyclones are used in the field of air pollution 
control with small cyclones for ambient and 
source sampling and large ones for industrial 
particulate control. Their simple design, low 
capital and maintenance costs, and adaptability to 
a wide range of operating conditions have made 
cyclones one of the most widely used industrial 
dust collectors. 
 

 
Figure 1 – Typical cyclone design 

 
Due to the complex three-dimensional fluid flow 
in cyclones the exact mechanisms of removing 
particulate are still not fully understood. In 
addition, different operating conditions such as 
temperature, pressure and flow rate add even more 
difficulties to the already complicated problem. 
Therefore, most cyclone theories are based on a 

simplified model or depend upon empirical 
correlation equations. Although these theories are 
valid for certain cyclone operating conditions, 
none of them has been satisfactorily validated. 
Therefore, study on cyclones is still largely based 
on experiment methods and design of cyclones 
relies upon experience, trial and design guides. 
Halasz et al., 2000 employed a FLN (Functional 
Link Network) neural network for modeling the 
particle collection efficiency, according to 
Equations 1 and 2, using literature data for big and 
small diameter cyclones, respectively. The NN 
models were a function of operational conditions 
[flow (Q), diameter of the particle to be separated 
(dp) and ratio between fluid viscosity and particle 
density P=(µ/ Sρ )], the equipment characteristic 

relations [(a/Dc), (b/Dc), (De/Dc), (H/Dc), (h/Dc), 
(B/Dc), (S/Dc)] and cylindrical section diameter, 
Dc. The lower and upper limit values for the 
parameters are reported in Table 1. 
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3. STABILITY ANALYSIS 

 
Bifurcation theory provides tools for a system 
stability analysis under its parametric changes. As 
the parameters undergo changes, the existence of 
multiple steady states, sustained oscillations and 
traveling waves might occur for highly nonlinear 
processes, Ray et al. (2000). 
The quality of the different NNs was evaluated by 
analyzing their dynamic structure (attractors and 
respective stability characteris tics). In order to do 
that, bifurcation and stability analyses were 



carried out to unveil the attractors of the NNs, 
employing well-known continuation methods. The 
computations presented in this paper were carried 
out with routines provided by AUTO, Doedel 
(1986). Steady states are stable if all eigenvalues 
of the Jacobian matrix are inside the unity circle. 
If any of the eigenvalues is outside the unity 
circle, the steady-state solution is unstable. At a 
Limit Point, an eigenvalue becomes identically 
equal to +1. At this point, multiple steady state 
solutions usually appear and a change in stability 
occurs. At a Hopf (Thorus) Bifurcation Point, a 
pair of complex eigenvalues crosses the unit circle 
with non-zero imaginary component and a branch 
of oscillatory solutions may appear. At a Period 
Doubling Bifurcation Point an eigenvalue 
becomes equal to -1 and branches of periodic 
solutions usually develops. It is assumed here that 
a good NN model should exhibit a steady-state 
bifurcation diagram that resembles the bifurcation 
diagram of the original process. This means that 
NNs should present the same bifurcation structure 
and bifurcation points of the original process. 
Therefore, in our particular case, a good NN 
should not display multiple steady-state solutions 
and steady-state unstable operation conditions. 
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AUTO automatically detects bifurcation points 
and provides routines for computation of the 

multiple steady state solutions, oscillatory and 
periodic solutions that arise at these special points. 
Unstable behavior usually occurs in the vicinities 
of these bifurcation points, as at least one of the 
eigenvalues crosses the unity circle. Therefore, 
identification of the bifurcation points may allow 
the understanding of how and why the NNs 
models fail at certain process operation 
conditions. 
 

Table 1 – Parameter range  

 big diameter 
cyclone 

small diameter 
cyclone 

parameter lower 
limit 

upper 
limit 

lower 
limit 

upper 
limit 

cD , m 0.18 0.4 0.01 0.05 

910P × , 

sm2  
4 80 4 80 

310Q × , 

sm3  
43 240 0.15 4.8 

cDa  0.25 0.7 0.21 0.59 

cDb  0.15 0.3 0.15 0.32 

ce DD  0.3 0.58 0.2 0.8 

cDS  0.35 3.5 0.4 1.64 

cDH  3 6 2.3 4.3 

cDh  0.5 3.5 1.1 2.1 

cDB  0.38 1 0.3 0.69 

dp , m 6101 −×  4101 −×  6101 −×  4101 −×  
 

4. RESULTS AND DISCUSSION 
 
Literature information provides that as the 
parameter Dc improves, the collection efficiency 
decreases. The increase of P produces a decrease 
in the collection efficiency. As Q, S, h, B and dp 
increase the collection efficiency increases. In 
addition, as b and De increases, the collection 
efficiency diminishes. Finally, it is well-known 
that the collection efficiency varies from zero to 
unity. 
The bifurcation diagrams presented in Figures 2 
and 3 for big and small cyclones, respectively, 
were built using central parameter values (see 
Table 1). All NN models present incompatible 
behavior for the collection efficiency. Besides, as 
b increases the small cyclone NN model predicts a 
wrong increase in the collection efficiency. The 
small cyclone NN model also indicates that the 
collection efficiency is insensitive to parameters 
B, De, S and P. The big cyclone NN model 
displays an inverse behavior for the continuation 
parameter De. The big cyclone NN model 



presents an incompatible collection efficiency 
behavior as the continuation parameter dp varies. 
The small cyclone NN model presents opposite 
collection efficiency behavior as the continuation 
parameter h varies. Finally, the big and small 
cyclone NN models present spurious collection 
efficiency behavior as the continuation parameters 
P and S varies. 
 

5. CONCLUSIONS 
 
It was observed that NNs built to represent 
cyclones presented incompatible open loop steady 
state stable behavior. Also, the NNs generalization 
capacity was very poor in the central data region, 
producing spurious solutions, incompatible with 
the real system performance. Bifurcation diagrams 
built in the extreme parameter limits, not shown in 
the text, presented the same incompatible 
collection efficiency values. The collection 
efficiency is supposed to be severely affected by 
Q, dp, De, B and Dc. However, none of the 
bifurcation diagrams presented such behavior. 
It may me concluded that although NNs may be 
used successfully for identification purposes, care 
must be taken regarding the number and range of 
data used, as the simple manipulation of the 
neuron activation functions, NN architecture and 
initial guesses used for NN training are not 
enough to guarantee the building of proper 
models. It is also shown that, detailed bifurcation 
analysis may be very useful for the proper design 
and identification. Bifurcation diagrams indicate 
whether spurious model responses are predicted 
by the model and therefore indicate whether 
additional effort is needed for proper model 
development. The result obtained with the 
bifurcation analysis validation criterion motivates 
further analysis for adequate NN cyclone model 
building. The authors are now working on the 
analysis of the training data set (500 points), used 
by Halasz et al. (2000), in order to investigate the 
reasons for the weak NN performance. 
Bifurcation analysis was used as an efficient tool 
for validating models, which were built in a 
supervisory fashion, using available experimental 
data. Unknown systems can be unveiled if the 
convergence of the bifurcation diagram to a final 
structure is used as a quality index in an iterative 
procedure. This sophisticated validation procedure 
is indicated for complex units operating in a large 
range of operating conditions and using nonlinear 
model based controllers. 
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Figure 2 – Bifurcation diagrams for big diameter cyclones 



 
 

  

  

  

  

  

Figure 3 – Bifurcation diagrams for small diameter cyclones 
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