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Abstract: This paper studies the problem of designing controllers for enlarging the
stability region of continuous stirred microbial bioreactors.  A specific application is in
anaerobic digestion, where the stability region can be very small if the operating steady
state is selected to maximize the methane production rate. A control Lyapunov function
approach is followed to construct a globally stabilizing state feedback control law. This
turns out to be proportional output feedback in the case of anaerobic digestion, where the
measurement is the methane production rate. The robustness properties of the feedback
controller are also investigated. For situations of large, measurable changes in the organic
load of the bioreactor, a feedforward measurement is incorporated in the control law,
leading to improved robustness margin.  Copyright © 2002 IFAC
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1. INTRODUCTION

Continuous stirred microbial bioreactors, often called
chemostats, cover a wide range of applications;
specialised “pure culture” biotechnological processes
for the production of specialty chemicals (proteins,
antibiotics etc.) as well as large-scale environmental
technology processes of mixed cultures such as
wastewater treatment.  The dynamics of the
chemostat is often adequately represented by a
simple dynamic model involving two state variables,
the microbial biomass x and the limiting organic
substrate s.  For control purposes, two operating
variables are usually considered, the dilution rate D
which is the manipulated input, and the feed
substrate concentration 0S  which is a load variable.
A general model for microbial growth on a limiting
substrate in a chemostat is of the form:
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where ( )sµ is the specific growth rate, and /x sY  is a
biomass yield factor.  One important example is
anaerobic digestion, which finds many applications

e.g. in wastewater treatment, sludge management,
energy from biomass, etc.
The purpose of this work is to study the problem of
robust global stabilization of a bioreactor whose
dynamics follows (1), the motivation coming from
control problems in anaerobic digestion processes.
Section 2 provides some background on anaerobic
digestion and explains the nature of the control
problem. In Section 3, a simple feedback controller is
derived via a control Lyapunov function approach.
The robustness properties of the feedback controller
are examined in Section 4. Finally, Section 5
develops a feedforward / feedback controller with
improved robustness margin.

2. EXAMPLE: ANAEROBIC DIGESTION

Anaerobic digestion is a complex biochemical
process, in which organic compounds are mineralised
to biogas (a useful energy product), consisting
primarily of methane and carbon dioxide, through a
series of reactions mediated by several groups of
microorganisms. Under normal (or balanced)
operation, the rate of production of the intermediates
is matched by their consumption rate; hence there is
very little accumulation of these compounds.



However, disturbances such as an increase in the
concentration of organic compounds in the feed
(organic overload), an increase in feed flow rate
(hydraulic overload), presence of toxins in the feed,
and temperature fluctuations, can cause an imbalance
in the process (Switzenbaum et al., 1990), which
results in accumulation of volatile organic acids.
These acids cause a drop in the pH, inhibiting
methanogenesis and the reactor fails.  Such a failure
has major consequences in the process economics
since digester recovery can be a very cumbersome
and costly process.  For this reason, the development
of appropriate control schemes for anaerobic
digesters has received significant attention in recent
years (Perrier and Dochain, 1993; Pind et al., 2003).

2.1 Mathematical model of anaerobic digestion.
For the description of anaerobic digestion, the
mathematical model (1) can be used.  This system of
equations describes methanogenesis, the ultimate
step in anaerobic digestion, which is rate limiting and
is usually the most sensitive step.  In other words, it
is assumed that the bioconversion of organics into
fatty acids (hydrolysis and acidification) has fast
kinetics.  Then x  and s  in (1) represent the
methanogen and volatile fatty acid concentrations
respectively. The specific growth rate is assumed to
follow the Andrews kinetics (substrate inhibition)
(Graef and Andrews, 1974):
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The output of the system is the methane production
rate,
                               ( )Q Y s xµ=                              (3)
where Y is a yield factor for methane production.

2.2 Optimal steady state for methane production

Apart from the washout steady state ( 0x = , 0s S= ),
the bioreactor’s steady states are calculated from the
equations:
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For a given feed, there is a value of the dilution rate
that maximises the methane production rate. The
steady state that corresponds to the maximization of
methane production rate, i.e. 0( )( )x s s sQ YY s S sµ= − ,
draws technical interest. The methane production
rate is maximized when:
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Solving the above equations for ( )sµ  given by (2), it
is found that the optimal steady state is:
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For the following values of the parameters:
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the optimal steady state from equation (5) is

506.714ss mg l= . This corresponds to
474.664sx mg l= , 10.377635sD d −=  and

 1 11.337205s reactorQ ll d− −= .
The above numerical values of the parameters and
the resulting optimal steady state conditions will be
used in the numerical calculations throughout this
paper.

2.3 Local asymptotic stability
The eigenvalues of the linearization of (1) are:
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local asymptotical stability is guaranteed as long as
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the optimal steady state given by equation (5).

2.4 The need for control
Figure 1 depicts the phase portrait of the system
dynamics under constant dilution rate D, in particular
for 10.377635sD D d −= = , which is the optimal
steady state value. In the diagram, the points S and U
represent the corresponding stable and the unstable
steady states of the reactor, which are the solutions of
equations (4). Notice that the optimal steady state S
is locally stable but the stability region is very small.
This makes the optimal operation of the biochemical
reactor very sensitive to disturbances.
The goal of control is the stabilization of the system
in the sense of enlargement of the stability region.

Fig.1. Phase portrait of the open-loop dynamics

3. FEEDBACK CONTROLLER SYNTHESIS: A
CONTROL LYAPUNOV FUNCTION APPROACH

Consider the dynamic system (1) with
[0, )D∈ +∞ , (0, )x∈ +∞ , (0, )s∈ +∞  where

: R Rµ + +→  is a smooth function with
(0) 0, ( ) 0sµ µ= > for all 0s > . Also, consider the

coordinate transformation:
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where des
ss  is a design steady state value for s  (e.g.

from equation (5)). Transformation (6) maps the
open first quadrant onto 2R . In particular, it maps

the design steady state / 0( )des
s x s s

des
s s

x Y S s
s s

 = − 
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 to the

origin. Moreover, to facilitate the derivations,
consider the input transformation:
                                   ( )D s uµ=                             (7)
Under the transformations (6) and (7), the system (1)
becomes:
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Consider now the control Lyapunov function:
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The time derivative of V along the trajectories of (8)
is given by:
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Since (exp( ) 1) 0x x− − < for all 0x ≠ , it is concluded
from (10) that the smooth feedback law:
                                    1xu e=                               (11)
will  globally  stabilize the origin for system (8).
Transforming the feedback law (11) back to the
original coordinates (via (6) and (7)) results in
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Notice that from equation (12), it is guaranteed that
0D ≥ for all times.

The feedback law (12) is a nonlinear state feedback
law and, in general, requires measurement of both
biomass and substrate. However, in the case of
anaerobic digestion (see Section 2) where the
measured biogas production rate is proportional to
the product ( )s xµ , it becomes a linear output
feedback law:
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It is important to point out that the control law of
equation (13) coincides with the constant yield
control law (CYCL) of Pullammannappallil et al
(1998), where the methane yield (defined as the ratio
between the methane production rate and the feed
flow rate) was maintained at a constant set-point
value. Mailleret and Bernard (2001), using a
different approach, arrived at the same control law

and provided a rigorous justification of global
closed-loop stability. The control law was
implemented experimentally in Pullammannappallil
et al (1998) and in Mailleret et al. (2003).

The closed-loop system under the feedback law (12)
or (13) is:

                / 0

/ 0

1 ( )
( )

( ) ( )
( )

des
x s s

des
s

des
x s s

dx x s x
dt Y S s

s s s xds
dt Y S s

µ

µ

 
= − − 

−
=

−

            (14)

The form of the closed-loop system shows that:
i) the closed-loop system’s equilibrium is at
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ii) 
/ 0 / 0

( )
( ( )) ( )

des des
s s

des des
x s s x s s

d s s s s
d x Y S s x Y S s

− −
=

− − − −
, which

proves that the system’s trajectories represent straight
lines on the s x− plane.
Figure 4 depicts a phase portrait of the closed-loop
dynamics (14) for the particular parameter values and
design conditions of Section 2.

Fig.2. Phase portrait of the closed-loop system (14)

4. ROBUSTNESS PROPERTIES OF THE
FEEDBACK CONTROL LAW

In the case of direct measurement of the methane
production rate ( )Q Y s xµ= , the control law derived
in the previous section is completely insensitive to
errors in ( )sµ , in terms of achieving global stability.
Of course, the computed des

ss  (e.g. from equation (5))
will depend on the parameters in ( )sµ  (like sK and

IK ) and will no longer be optimal in the presence of
parameter errors. For the particular parameter values
given in Section 2, which are representative of a
typical anaerobic digestion process, it is found that a
50% error below the nominal values of sK  and IK
corresponds to 1.24% and 1.17% biogas loss
respectively and that a 50% error above the nominal
values corresponds to 0.63% and 0.22% biogas loss.

The situation is different in the presence of errors in
0S . Suppose that a design value 0

desS is used in the
control law (13), i.e.
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whereas the true substrate concentration in the
process is 0S . Then the resulting closed-loop
dynamics will follow:
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From (16) it is seen that the closed-loop system’s

equilibrium will be at / 0

0 0

( )
( )

des des
s x s s

des des
s s

x Y S s
s s S S
 = − 
 

= + −  

Notice that sx equals the design value of biomass
concentration, but there will be an offset of the
substrate from the design conditions by an amount
equal to the error in 0S . The problem is that, if 0S is
significantly lower than its design value 0

desS , ss may
be negative and therefore physically unrealistic.

Case 1: If 0 0( ) 0des des
ss S S+ − > , then the system (16)

can be transformed via the coordinate
transformation:
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resulting  in:

         
1 2

2 1 2

1
0 0

2
0 0

(1 ) (( ) )

(1 ) (( ) )

x xdes des
s

x x xdes des
s

dx
e S S s e

dt
dx

e e S S s e
dt

µ

µ−

= − − +

= − − − +
  (18)

which is globally asymptotically stable, as can be
easily seen through the Lyapunov function (9).

Case 2: If 0 0( ) 0des des
ss S S+ − < , the trajectories of the

system (16) will still be straight lines. However, they
will not reach the physically unrealistic equilibrium
point. Instead, they will terminate on the x - axis,
which corresponds to process shut down ( x =const.,
s =0, D = 0).

Figures 2 and 3 depict representative phase portraits
for 0

desS =10000 mg/l and the rest of the parameters as
in Section 2. In Figure 3, 0 11000S mg l=  and this
corresponds to Case 1, where the effect of the error
in 0S  is just a shift in the steady-state value of s . In
Figure 4, for 0 8000S mg l=  and this corresponds to
Case 2, where the error in 0S  brings the system to
shut down.

The conclusion from the foregoing analysis is that
the feedback control law is robust for errors in 0S
such that: 0 0( )des des

ss S S> − . Otherwise, it brings the

system to shut down, which is completely
undesirable.

Fig.3. Phase portrait for 0 11000S mg l=

Fig.4. Phase portrait for 0 8000S mg l=

5. FEEDFORWARD /FEEDBACK CONTROL

If it is anticipated that the error in 0S  could be large
enough to violate the robustness condition of the
previous section, the control law will need to be
modified to prevent shut down. One possibility is to
measure the feed substrate concentration on-line and
use it as a feedforward measurement in the control
law. The measurement of 0S  is feasible using a Total
Organic Carbon (TOC) analyzer.
Consider the control law (12) or (13), where 0S  is
now the on-line measurement of the feed substrate
concentration and, therefore, the control law now
involves both feedback and feedforward action.
Then, the resulting closed-loop system is still given
by (14), even though now 0S  is a function of time,
with 0 ( ) 0S t > for all 0t > . In the event that 0S
remains constant, the closed-loop system’s

equilibrium will be at: / 0( )des
s x s s

des
s s

x Y S s
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. As long

as 0
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sS s> , the equilibrium will be in the first

quadrant and the closed-loop system will be globally
stable as a result of the analysis of section 3.
The situation where 0 ( )S t is time-varying but
bounded requires further attention. Suppose that

0
desS is the value of 0S  for which the reactor has been

designed to operate. Then the difference
                              0 0( ) ( ) desz t S t S= −                     (19)
represents a bounded but, in general, non-vanishing
perturbation to the system. To be able to analyze the



effect of this perturbation, consider the coordinate
transformation:
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Under this transformation, (14) transforms into:
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Now assume that:
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will be 0≤ as long as
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From the above, using standard arguments of the
theory of non-vanishing perturbations (Khalil, 1996,
Chapter 5), it follows that for any initial conditions,
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In other words, the solutions of (21) are uniformly
ultimately bounded, with 2x  asymptotically
approaching zero.
Consequently, the final value of the substrate
concentration will equal its design value,
lim ( ) des

st
s t s

→∞
= , whereas the ratio of the biomas

divided by its design value will be ultimately
bounded as follows:
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for every initial condition within the open first
quadrant.

Numerical simulations were performed under pure
feedback action (FB) and combined feedforward and
feedback action (FF/FB), when the system is initially
at steady state with 0 0 10000desS S mg l= =  but 0S
undergoes a step change to a new value.
Figures 5, 6 and 7 compare the responses of x , s and
Q  for some representative final values of 0S .

Fig.5.Responses of x  for representative values of 0S

Fig.6.Responses of s  for representative values of 0S

Fig.7. Response of Q  for representative values of 0S

It is seen from Figures 5 and 6 that, as predicted by
the analysis, in a step change in 0S , the steady state
of x  is unaffected under FB control, whereas the
steady state of s is unaffected under FF/FB control.



The problem with FB control is when the robustness
condition 0 0( )des des

ss S S> − is violated, like in the
case 0 9000S mg l= , where the system is brought to
shut down. For 0 9500S mg l= , the reactor is not
shut down because the robustness condition is
satisfied, but the final value of the substrate is very
small ( 6.714s mg l→ ), leading to small biogas
production  ( 1 10.111 reactorQ ll d− −→ ). On the other
hand, FF/FB control can tolerate much larger
deviations.
In all the step changes considered, FF/FB has better
performance than FB in the sense that the biogas
production Q  is larger (see Fig. 7).

Figures 8, 9 and 10 depict the responses of x , s and
Q  under a sinusoidal variation in 0S  of amplitude
500 mg/l and period 60 d. The system is initially at
steady state with 0S = 0 10000desS mg l=  and the
average value of 0S  remains the same (10000 mg/l)
for 0t > :

0
2( ) 10000 500sin( )
60

S t tπ
= + .

Fig.8. Response of x  for a sinusoidal change in 0S

Fig.9.  Responses of s for a sinusoidal change in 0S

Fig.10. Response of Q  for a sinusoidal change in 0S

Even though FF/FB cannot completely eliminate the
effect of the discrepancy 0 0( ) desS t S− , the response of
the system is bounded. Also, FF/FB leads to higher
biogas production, as shown in Figure 10.
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