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Abstract – This paper presents an experimental application of the reinforcement 
learning method on process control. Reinforcement learning is a model-free 
technique based on learning how to optimize a cumulative future reward, based on 
direct experimentation with process plant. As a demonstrative example, 
reinforcement learning control is tailored and applied on a neutralization 
laboratory plant: The One-step Q-learning rule of reinforcement learning control is 
applied using a symbolic characterization of plant state. The application shows the 
ability of the proposed method to learn to control nonlinear chemical processes.   
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intelligence.  

1. INTRODUCTION 

The pH control of neutralization processes is a 
ubiquitous problem encountered in the chemical 
industry. Traditional linear control analysis and design 
tools often fail to provide an effective control. 
Standard PI and PID control often provide poor 
performance for pH control, due to the high 
nonlinearity of the chemical/physical systems 
involved, time varying properties, and the sensibility to 
small perturbations when working near the equivalence 
point (Shinskey, 1973; Fuente et al, 2003).

Some researchers pay attention to the fine point of 
methodology for treating pH neutralization process. 
Different approaches to pH control have been applied 
previously, for instance fuzzy control (Fuente et al, 
2003), fuzzy IMC (Edgar and Postlethwaite, 2000), 
fuzzy predictive control (Biasizzo et al., 1997), and 
Neural Networks (Loh et al., 1995).  Unfortunately, in 
these approaches there are some weaknesses, such as, 
the control structures are quite complex (They could be 
difficult to implement on existing distributed control 
systems), they are quite conservatives (The controller 
takes a long time to reach the desired response) and 
tuning is time-consuming (the controller has many 
tuning parameters).  

For the above reasons, it is necessary to introduce other 
avenue to solve these problems. 

This paper presents a rather simple approach to solve 
the pH control process problem applying the 
Reinforcement Learning technique. There are several 
learning algorithms in Reinforcement Learning. In this 
paper, the one-step ahead Q-learning look-up table is
applied and the -greedy policy method is used to 
select one of the available actions at each state of the
plant. 

The two main advantages of Q-learning are that: 1) it is 
model-free and 2) it follows an off-policy learning 
approach. The important advantage of off-policy 
methods is that for the method sophisticated 
exploration strategies can be developed to speed up 
learning.  

2. REINFORCEMENT LEARNING 

In this work, a new technique apply to pH control 
based on learning is proposed. The use of learning to 
solve complex control problems is a rather new 
technique called reinforcement learning or RL for 



short (Sutton and Barto, 1998; Martínez and Somaglia,
2002). RL can be defined as ‘learning what to do by 
doing’, i.e. how to map perceptions of process states or 
histories to control actions, so as to maximize an
externally provided scalar reward signal. According to
this definition, the learner (controller) is not instructed
to act under the tutelage of an exemplar teacher, as in 
most forms of supervised learning, but instead must try
control actions seeking out those that provide the
maximum cumulative reward.

The learning algorithm in RL emphasizes the 
interaction between an active decision-making agent 
(or intelligent controller) and its target dynamic system
(see Figure 1). In the latter, a desired behavior or 
control goal is permanently sought despite imperfect
knowledge about system dynamics and the influence of 
external disturbances, including other controllers. The
reward function can also incorporate information on 
one or more preference indices. These preferences
define the most desirable ways for achieving a control
goal (or objective) and are the basis for assigning
rewards (or penalties) to a learning controller.

An agent (called controller) interacts with its
environments (controlled system or plant). They
interact continually: the agent selects an action and
then the environment responds to the action and 
presents new situation to the agent. These responses of
the environment are communicated to the agent 
through a scalar reinforcement signal. This can be seen
in Figure 1. 
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Fig. 1. An agent interacting with its environment. Dash
line represents delay.

Achievement of the control goal and preference
optimization demands foresight to account for indirect,
delayed consequences of control actions. This is
particularly critical for chemical plants where material
recycles gives rise to process streams whose
composition and flow rates continuously evolve and 
slowly drift over time. This goal-oriented perspective
of control actions gives rise to a central problem of
RL: to devise a computational approach with the
capability of apportioning rewards over a sequence of 
actions, taking into account the control goal to be 
achieved and the preferences to be optimized. A key
concept in this regard is that of an action-value
function, which has permitted an important

breakthrough in the analysis and design of RL
algorithms (Sutton and Barto, 1998).

When resorting to controller/process interactions for
learning, four typical components of an RL algorithm
can be identified: a control policy, a reward function, a 
value function, and a learning algorithm. The control 
policy is a dynamic relationship (i.e. changes with
interaction) that defines which action to take at a given
state bearing in mind the achievement of the goal and 
optimizing the preferences. The other components
serve as means to learn and improve the control law; 
i.e. their existence is only justifiable on the grounds of 
being components of learning algorithms for the
control law. 

When the desired goal has been reached (reward) or
when the system has failed (punishment) a signal
indicates the success or failure after a sequence of 
action has been taken. This signal is called delayed
reinforcement signal.

To maximize the expected value of a criterion
function, the delayed reinforcement signal, a learning
process of trial and error is applied. These two
characteristics (trial-and-error search and delayed
reward) are the most important distinguishing features
of reinforcement learning (Sutton and Barto, 1998). 

2.1 Algori hmt

The reward function translates the goal and preferences
into single numbers indicating the short-term benefit or
reward rt+1 of taking the action ta at a given state t .
Note that the reward is a single number that varies
from one decision step to another. However, the very
purpose of the control law is to maximize the
cumulative reward that can be obtained over the next h
steps in the sequence of rewards that follow the time
step t denoted by r

s

t+1, rt+2, rt+3,..., rh. The cumulative
reward Rt that can be obtained from time t on is just the
return, defined as: 

tR rt+1+rt+2+rt+3+...+rh                        (1) 

To make definition (1) more mathematically tractable
for long-sequence of controls (i.e. when h ) it is
better to geometrically discount rewards using a 
recency factor , (where 0  1):

           (2) .
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The discount factor  is used to weight near term
reinforcements more heavily than distant future
reinforcements. If  is small, the agent learns to behave
only for short-term reward. The closer  is to 1 the



greater the weight assigned to long-term
reinforcements.

Using the return Rt, it is possible to assess how good
(or bad) is to take the action at at the state st, from the 
point of view of the control goal and the chosen 
preferences. This forms the basis for defining the 
action-value function. To clearly distinguish between
the effect on Rt of at from the effect on Rt of decisions
to be taken later in sequel, the action-value function is 
defined as follows. At time step t, the action-value
function approximates the expected value of Rt upon 
executing at when st is observed and acting optimally
thereafter. This function is called an action-value
function and is mathematically defined by

aassREasQ ttttt ,),(            (3) 

The main issue to be solved during learning is the
dilemma of exploration versus exploitation. To exploit
what it is already known, good estimates of the actual
value of actions at different states are needed. For this, 
exploration of actions with apparently lower values
must be tried. To exploit more after learning it is
necessary to explore more during learning.

A policy, (st, at), is defined via the action value
function, with represent how much the future rewards 
the agent would get by taking the action at at state st
and following the current policy in subsequent steps.
Equation 3 can be rewritten as an immediate
reinforcement, plus a sum of future reinforcements:
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The equation can be updated by substituting the sum of 
future reinforcements with the estimated value
function:
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         (5) 

where the expected discounted reinforcement of taking
action at is taken over the next state, st+1, given that the
current state is st. A model of state transition
probabilities is needed. If it does not exist, a Monte
Carlo approach can be used in which a single sample
replaces the expectation, and the value function is
updated by a fraction of the difference (Anderson et al,
1997):
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where the learning rate, 0  1, is tuned to
maximize the speed of learning, as small learning rates
induce slow learning, and large learning rates induce
oscillations. Value iteration is applied to increase the
action-selection policy and achieve optimal control.
This dynamic programming method combines steps of 
policy evaluation with policy improvement. The 
update corresponds to the equation:
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This equation is known as Q-learning algorithm, which
is used to improve optimal control.

The balance between exploration and exploitation can 
be achieved in different ways. The proposed alternative
used in this paper is the -greedy approach, which 
consists of selecting the “best” action most of the time,
but every once in a while explore with small
probability .  In the previous work softmax action
selection was introduced (Syafiie et al, 2004a) and a 
comparison of softmax and -greedy action selection
was introduced (Syafiie et al, 2004b). 

2.2 Application to pH process 

This section describes the sequence of steps involved
in the implementation of the reinforcement learning
approach to the pH process.

To categorize the reading of pH and to select an action 
available in each state, this study uses 5 symbolic
states. These states are called higher, high, goal, low,
and lower, and are numerically represented by state 1, 
2, 3, 4, and 5, respectively. Figure 2 shows that the
system has 5 states and each state has two possible 
actions (except in the goal state, where only one action
is available). The probability that the process makes a
transition to a new state from the current state depends 
on the system behavior following a control action.. For 
instance, if the process is in the state high, and the 
controller chooses action 2, the process may move
either to the goal state, to low state, or remain in the
state high; but if the controller selects action 3, the
process can remain in the state high or may transition
to the goal state.

Symbolic states are defined by a parameter that refers 
to the setpoint, sp, as a desired output. The goal state is
restricted by boundary values: upper, sp+0.2, and 
lower, sp-0.2. This is shown in Figure 3.  The goal of 
the control task is to guarantee that the process is in the
goal state most of the time. Maximum reward is get for
achieving or remaining in the goal state. When the
process makes a transition out of the set point band, the
controller is punished by a negative reward.



The process to be studied is the neutralization of a 
process stream using acid titrated flow rate as the
manipulated variable. A selected control action is sent
to the system actuator; the process reacts to the action 
taken and generates a response (state and reward) to
the intelligent controller or agent. In the new situation
the controller gets a reinforcement signal of -1 or 100 
depending on the state. This reward expresses the
control goal quantitatively. For example, whenever the
process state is in lower, low, high or higher states
after the control action have been implemented the
agent receives a punishment or negative reward of -1. 
This means that the controller has failed regarding the
control goal. Otherwise when the process is in the goal
state, the agent receives a reward equal to ± 100. This
reward indicates that the agent has been successfully in
the selection of the control action.
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Fig. 2. Action set and possible state action transitions.
Each state has 2 actions except for the goal state
that has only one. An arrow corresponds to the
possibility of transition from current state to a new
state.
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Fig. 3. Defining reward by position of output reading
of the process (pH(t)). A reward is defined by
applying parameters referring to the setpoint, sp,
of the process in each state. Each state gives a
scalar reward.

A scalar reinforcement signal is introduced in equation
8 in order to define rewards following a control action
depending on the resulting state. This reward function
is defined for each state as a single number.
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Action selection

When the system is in the goal state, the agent has only
one action available, namely to “wait” until the next
sampling time. Otherwise, when the system is in any of
the other states the -greedy policy is applied to select 
one action from the two available. The most probably
selected action is the one that has maximum action-
value. The parameter  used in the -greedy algorithm
is 0.3. This means that exploration (choosing an action
that does not have maximum action-value) will be
selected with probability 30 out 100.

The actions 1, 2, 3, 4, 5, 6, and 7 shown in Figure 2 
correspond to 0.3, 0.2, 0.1, 0, – 0.1, –0.2 and – 0.3
change percentages, respectively, of the previous
control signal ut-1. The selected action is then sent to
the actuator.

Control Algorithm

The algorithm developed for the learning controller is
as follow.

1. Read the state st
2. Select an action at, this action is chosen from

state st. The action corresponding to
maximum value for st is chosen with
probability (1- ) (unless in goal state that only
has one action).

3. Apply the selected at
4. Receive reward r (st, at) and the next state.
5. Find maximum value over the actions for

state st+1 as given by max Q(st+1, at+1) (which 
is the function that calculates the maximum
Q- value over the next state, st+1, and current
action).

6. Update the Q-value for state st and action at,
and save it at Q (st, at) using Equation (7). 

3. EXPERIMENTAL SETUP 

The pH process that is the focus in this study consists
of a tank with a stream of an unknown composition
flowing into it. In this study the process is to control
the pH level of an aqueous solution of sodium acetate
(NaCH3COO) as process flow titrated with
hydrochloric acid (HCl) in a continuous stirred tank



reactor (CSTR). An over flow system is applied:
therefore the volume can be considered constant.
Feeding various amounts of a solution of sodium
acetate varies the pH solution. The control variable u is
the flowrate of the titrating stream, which is fed using a 
peristaltic pump (ISMATEC MS-1 REGLO/6-160).
The output variable y is the concentration of hydrogen
ions in the effluent stream, measured as pH. The 
mixture pH level is measured using an Ag-AgCl
electrode (Crison 52-00) and transmitted using a
pHmeter (Kent EIL9143). The electrode dynamic
response presents appreciable and asymmetric inertia.
The pH measure and the control signal are both
transmitted through an A/D interface (ComputerBoards
CIO-AD16, 0-5V). The plant is controlled and
monitored from a Personal Computer. An overview of 
the process is shown in Figure 4.

The process state at any given time is defined upon pH 
reading. When the process is in the state 1 or 2, the 
selected action must be to increase the acid flow into 
the tank. Otherwise when the process is in either state
4 or 5, the chosen action has to decrease the acid flow
into the tank. The agent chooses following a sequence 
of actions until the goal state is reached.

process stream titrated flow

effluent stream

PCreactor

Control
signal

u(t)

pH
y(t)

Fig. 4. Experimental setup of pH control process. The
objective is to control the pH level of the process
stream using acid titrated flow.

4. RESULTS AND DISCUSSION 

The Q-learning algorithm has been successfully
applied to the pH process. Different experiments have
been carried out to test closed loop performance in
realistic situations. The value of the meta – parameter
selected for the agent are: discount factor ( ) is 0.98, 
and learning rate ( ) is 0.3. The application is
conducted on the boundary value of the goal state for 
reference, sp, (sp - 0.2 < goal < sp + 0.2). This band is
selected because it corresponds to the amplitude of the
measurement noise. As an example a typical 
experiment of the response of the plant is shown in
figure 5 and control signal is shown in figure 6. When
the process is below the setpoint, this means the
controller should decrease acid flow into the process,
and when the process is above the setpoint the
controller must increase the titrated flow into the
process. For example, control signal in time t-1, ut-1, is
0.12 and the system is in state low, the agent takes 

action 5. The control signal in time t, ut, is 0.11988.
The next control signal refers to the control signal ut
and the action taken on given state. The controller 
manipulates the control signal as follow

uxuu
actionax )(001.0

            (9) 

where a is the value for the action corresponding to the
goal state that it is defined to be the “wait” action, in
this case a is equal to 4.

Figure 5 shows the responses of applying the algorithm
for sodium acetate (NaCH3COO) - hydrochloric acid
(HCl) system. This experiment is conducted for 
process flow with unknown concentration of 
NaCH3COO titrated with 1 %v HCl. The responses 
toward the desired setpoint exhibit some oscillations
due to the limited number of actions available to the
controller when process pH is out of the desired band. 
The controller, wherever the process is out of the
desired band, selects one of only 2 possible actions to
manipulate the actuator. These limited actions have
been used for control action without prior model of the
plant is needed. When the system is within the goal
band, the controller only chooses the option of 
maintaining the titrated flow into the process. The
controller can manipulate titrated flow on the range of
0 to 1.
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Fig. 5. Step responses of the plant.
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When the setpoint changes from 5 to 3, the controller 
increases acid flow sharply into the tank until the pH 
has entered the goal band. While the process is within 
the goal band the agent chooses the previous control 
signal and the response decreased below the goal band. 
Soon the agent knows the system outside (below) the 
goal band, the controller reacts to decrease acid flow 
into the tank. This is shown in figure 6. The responses 
after sometime shows that the agent learns to maintain 
the pH within the desired goal band. 

When the environment changes to new situation, in 
this case when reference is changed, the agent needs 
sometime to learn and to interact to the new 
environment. This learning time is called training 
phase. During the training phase, the controller learns 
to increase and decrease the titrated flow to maintain 
the process in the goal band of the reference by 
adequately increasing and reducing the signals sent to 
the actuator. This is shown in Figure 6 that the 
controller is more active when the process is outside 
the goal band and less aggressive when the pH is
within the goal band specification. 

5. CONCLUSION 

The algorithm of one-step ahead Q-learning look-up 
table has been applied in a real plant situation. In this 
study, the optimal control action is selected using the 
-greedy policy. The application of one-step ahead Q-

learning look-up table in pH process has given good 
performance. Difference constituent in solution of 
acid-base system will give different behavior of the 
process. Mathematically this will give a different 
model. The main advantage of the proposed method is 
that it can be applied to nonlinear process control 
problems without resorting to a mathematical model of 
the process. 

Future work

In the future work, to solve the oscillation problem, we
are planning to apply multi step actions, macro actions, 
and option for state aggregation and temporal 
abstraction. Besides pH, Oxidation-Reduction Potential 
(ORP) is widely used as a control parameter in 
chemical processes. Other redox systems, ionic 
strengths of various inorganic salts, polarization of 
electrodes, organic compounds and temperature effects 
on electrodes affect the ORP value (Wareham et al,
1993). We plan to apply RL for an ORP control. Also 
we would like to apply RL in an integrated pH and 
ORP plant.
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