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Abstract: This work is part of a study aiming to improve crystallization processes. The 
batch crystallization of adipic acid is chosen as a case study, a process in which the 
supersaturation necessary for the crystals to appear and grow is generated by the cooling 
of the solution. This part of the study involves the process modeling and an analysis of 
the influence of the process variables on the final crystal size distribution (CSD) and on 
the quantity of solids. The results have shown that the developed model is a good 
representation of the process, being able to reproduce literature results. Copyright © 2004 
IFAC 
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1. INTRODUCTION 

 
Crystallization is an ancient unit operation and is 
widely used, since solids of high purity can be 
obtained. Batch crystallization is specially used in the 
production of high value added products, mainly 
because it offers flexible and simple processing steps 
for plants with frequently changing recipes and 
product lines (Zhang and Rohani, 2003; Rawlings et 
al., 1993). For this kind of material, product purity 
and the crystal size distribution (CSD) are of prime 
importance. Furthermore, the crystals produced 
through a crystallization process have a decisive 
influence on the downstream processing and, 
therefore, the CSD should be reproducible in each 
operation and regular as much as possible (Ma et al., 
2002). Therefore, the variables that affect the 
crystallization process must be known and controlled 
so as to be kept within an acceptable range, in order 
to satisfy the requirements concerning the final 
product quality and the production process (Rawlings 
et al., 1993). 
 
This work is part of a study aiming to improve the 
performance of batch crystallization processes. The 
batch cooling crystallization of adipic acid is chosen 
as a case study. In a well-mixed batch crystallizer, 
the final crystal product is determined by the 
supersaturation profile, the initial seed mass, and the 
seed crystal size distribution (Ma et al., 2002). The 
supersaturation evolution during batch crystallization 
processes determines the magnitude of the many 

kinetic phenomena that comprise the process. In 
order to perform a successful study of the process, 
the accurate modelling of the process is crucial. It 
turns possible the calculation of further on-line 
optimal operating policies, as well as real time 
applications (Zhang and Rohani, 2003). In order to 
analyse the performance of suitable control structures 
and to perform control calculations, an accurate 
modelling is necessary to be developed. 
 
Seeding is frequently applied to avoid a 
supersaturation peak at the beginning of the process 
(Giulietti et al., 2001). This occurs because the 
supersaturation values sufficient for crystal growth 
are lower than the necessary ones for spontaneous 
nucleation. So, if the system could be kept at a region 
in the metastable zone with not so high 
supersaturation values, and with addition of seeds, 
just seeds growth will occur (Mullin, 1993; Rawlings 
et al., 1992). 
 
In this work, the developed mathematical modeling 
of the adipic acid crystallization process is presented. 
The role of the several process variables in the final 
product is evaluated as part of the study of ways to 
improve the process. 
 
 

2. MATHEMATICAL MODELING 
 
In order to completely model a crystallization 
process, mass balance, energy balance and a 



description of the crystal size distribution are 
necessary. This description is necessary because the 
process produce a mass of particles of many sizes, 
whose description of size distribution is crucial to its 
characterization. The models used in this description 
are called population balance models. According to 
Puel et al. (2003), the population balance modeling is 
firmly established as a basic theoretical framework 
for all particle processes. 
 
Two phenomena dominate the crystallization 
kinetics: nucleation and crystal growth. Both 
phenomena consume the mass of the desired material 
during the crystallization process and are, therefore, 
competing mechanisms. They are different in the 
manner they consume material: nucleation involves 
the formation of new crystals while in crystal growth 
the crystals become larger with the deposition of 
material onto the existing crystals (Lang et al., 1999). 
Apart from nucleation and growth, other phenomena, 
such as agglomeration and breakage, may occur 
during the process. 
 
 
2.1 Population Balance – The Method of Classes. 
 
Population Balance equation (PBE) is a hyperbolic 
partial differential equation, which involves all the 
crystallization kinetic phenomena. Being strongly 
nonlinear, the PBE do not possess an analytical 
solution in most cases, requiring the development 
and adaptation of numerical techniques. According to 
Wulkow et al. (2001), in the present state of PBE 
studies, no standard numerical method has been 
established for population balance models and none 
of the presently available methods produce an 
efficient and accurate solution for a broad class of 
models. Discretization sizing techniques appear to be 
robust. Marchal et al. (1988) developed the Method 
of Classes, a method that transforms the partial 
differential equation into an ordinary differential 
equations system by discretizing the range of 
variation of the variable L, related to the crystal size. 
The obtained differential equations are then no longer 
written with population density functions but with 
absolute numbers of crystals in each class (Nallet et 
al., 1998). In a recent work, Puel et al. (2003) also 
used the Method of Classes to solve the population 
balance equation, but they extended the method to 
consider two characteristic dimensions.  
 
In the Method of Classes, the particles sizes are 
defined as L0, L1, L2,...., LN, where L0 is the size of 
the nuclei and LN is the size of the largest crystals. 
This sizes determine the existence of N 
granulometric classes Ci, whose widths are defined 
by ∆Ci = Li-Li-1 and the characteristic size of the class 
Ci is Si = (Li-1+Li)/2 (see Figure 1). 

Li-1 Li Li+1

Si
Si+1

Class Ci

Class Ci+1  
Fig. 1. Division of Classes. 
 

The population of crystals is described by the number 
density function Ψ. Ψ(L,t)dL is the number of 
crystals of size between L and L+dL per unit volume 
at time t (Nallet et al., 1998). Ni(t), the number of 
crystals per unit of volume in the ith class (Ci) at time 
t, is given by: 
 

1

( ) ( , )i

i

L

i L
N t L t dL

−

= Ψ∫                     (1) 

 
The model assumes that the number density function 
is constant at each class, turning possible the 
transformation of the population balance equation 
into a system of ordinary differential equations: 
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In the development of the modelling of the batch 
cooling crystallization process, the Method of 
Classes was chosen, because it is an efficient method 
widely used in literature, including in modelling of 
growth-dominated processes. Puel et al. (2003) stress 
that this numerical technique reliability is confirmed 
by three different papers dealing with bi-dimensional 
balance equations where discretization methods were 
used, despite differences in the formalism and the 
application area. However, the number of classes 
considered is the major key to guarantee the accurate 
solution, as was pointed out by Puel et al (2003). 
This was also observed in the present work. 
 
Growth Mechanism.   The expression for the growth 
rate developed by Marchal et al. (1988) is based on 
the film model and may be written as: 
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The effectiveness factor, ηr, which expresses the 
diffusional limitations in crystal growth, causing a 
distribution of the growth rates among the classes, is 
found by the solution of equation (4). The mass 
transfer coefficient, kd, is evaluated through the 
expression for Sherwood (equation (5)). 
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From the equation (5), it is easy to note that each 
granulometric class has a value for the mass transfer 
coefficient, what means that the growth rate is size 
dependent. 
 
The data of solubility of adipic acid in water were 
extracted from Postnikov and Nalivaiko (1971). 



Nucleation Mechanism.  Both primary and secondary 
nucleation are considered. Their expressions are 
respectively given by equations (6) and (7): 
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Agglomeration Mechanism.   Still in the work of 
Marchal et al. (1988), a model for the agglomeration 
mechanism is proposed, considering only the 
agglomeration of two particles. The agglomeration is 
considered as chemical reaction of particle m and 
particle n, leading to the formation of a crystal of size 
q. Considering that the pseudo-chemical reaction 
describing the agglomeration can be schematically 
represented by equation (9), its stoichiometric 
coefficient may be found by νest = (Sm

3+Sn
3)/Sq

3. The 
class q, where the agglomerate fits, is found by the 
relation: Lq-1<(Sm

3+Sn
3)1/3≤Lq. 

 
m + n qν

                        (8) 
 
All possible agglomerations between two particles (m 
and n, n ≥ m) can be arranged in a series, assuming a 
rank lm,n that represents its position in this series. For 
N granulometric classes, N(N+1)/2 different binary 
agglomerations are present and the series are 
represented by (1,1), (1,2) ... (1,N), (2,2), (2,3) .... 
(m,n) .... (N,N). The position lm,n of the 
agglomeration of a particle m with a particle n is 
found by relation (9): 
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This agglomeration will affect class i, only if i is 
equal to m, n (in both cases, νest = -1) or q (with νest = 
(Sm

3+Sn
3)/Sq

3). In this way, an overall stoichiometric 
coefficient of class i, with respect to agglomeration 
of rank l can be computed: 
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where δij = 1 if i = j and δij = 0 if i ≠ j. 
 
The net rate of particle production by agglomeration 
in the ith class is calculated by equation (11), where 
r(l) is the intrinsic rate of agglomeration of rank l, 
being a function of the number of collisions per unit 
volume per time and of the supersaturation. 
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David et al. (1991) proposed an expression for the 
calculation of the intrinsic rate of agglomeration 
(equation 12), based on phenomenological and fluid 

mechanical considerations, taking into account the 
concentration of particles, the supersaturation, the 
power dissipation per mass unit, the crystallizer size 
and of the crystals being agglomerated. The 
agglomeration contribution in the developed software 
is computed through equation (12). 
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where H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0. The 
coefficient kd’ is calculated by the same expression 
for kd (Eq. 5), but the size of crystal considered must 
be the size of the agglomerate (Sm + Sn). The f 
function represents a relative shape function of both 
crystals. Considering both particles as spheres: 
 






















−









+















−








−−−








−+
















−








−+

=








3

1

3

2
11

3
1

114

2
2

22

2

m

n

m

n

m

n

m

n

m

n

m

n

m

n

m

n

m

n

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
Sf

 

(13) 
 
λe is defined as Lagrangian microscale, which is 
taken as having the same magnitude as the Taylor 
microscale, calculated by: 
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The calculation of further on-line optimal operation 
policies takes an advantage with the inclusion of 
agglomeration in the model, compared to most batch 
optimization studies encountered in literature. Most 
of them neglect agglomeration and considers just 
nucleation and growth, which may be a poor 
consideration, as is the case with adipic acid, a 
classic-known substance that tends to agglomerate 
during crystallization processes. 
 
2.2 Mass Balance – Batch Crystallizer. 
 
The material balance of the solute is made based on 
the fact that a change in the solution concentration 
results in a change of the mass of crystals per unit 
volume. 
 
Since the simulated crystallizer is a batch one, the 
solute present in the solution in the beginning of the 
batch is the whole mass of adipic acid available for 
crystallization. The mass balance is made using the 
dissociation constant of adipic acid, considered as a 
monoacid: the concentration of solid in the 
suspension can be connected with the concentration 
of protons in the solution (Marchal et al., 1988): 
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2.3 Energy Balance. 
 
The energy balance must take into account the 
differences in enthalpy of the streams in and out, the 
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heat of crystallization and the heat removed by the 
cooling system. In the case study, batch 
crystallization, the energy balance equation is: 
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Using the Method of Classes, the integral present in 
the previous equation is substituted by a summation 
over all granulometric classes. 
 
The heat of crystallization of adipic acid was 
extracted from Postinikov and Nalivaiko (1971). 
 
The specific heat of the slurry is considered to be not 
so different from the water, since the process 
considered is the crystallization from solution, which 
is characterized to have not so high concentrations of 
solids. 
 
 

3. MODEL VALIDATION 
 
In order to test the validity of the constructed model, 
results from the literature were reproduced. The 
results obtained by Marchal et al. (1988) are 
compared with the ones generated with the developed 
model with the same data. To illustrate this point, 
Figure 2 depicts a comparison between the results for 
evolution of the relative supersaturation during the 
crystallization. The results generated by the 
developed software fit pretty well to the results 
obtained by Marchal et al. (1988), both for 
crystallization considering agglomeration or not. 
Considering the availability of data, the model is 
validated by the similarities of plots, not only for 
supersaturation evolution, but also for solids 
concentration evolution, CSD in number and in mass 
at the end of the batch and effectiveness factor for 
three granulometric classes during the batch. 
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Fig.2: Comparison between Marchal et al. (1988) 

result (left) and model predictions (right) 
 
 

4. SIMULATIONS – PROCESS VARIABLES 
INFLUENCE 

 
Some simulations were made in order to evaluate the 
influence of several process variables. The main 
results are presented here. They are concerned to 
seeding, cooling rate, influence of the global heat 
transfer coefficient and of the power dissipation. It 
should be pointed that the effect of model 
uncertainties (i.e., model parameters) on the accuracy 
of the model predictions should be analysed. It was 

evaluated, through analysis of the effect of model 
parameters variations (±15%) on the final response 
through experimental design. The study showed that 
the model uncertainties do not affect the analysis that 
can be extracted from the influence of the process 
variables: the same qualitative results illustrated in 
Figures 3 – 5 are obtained. 
 
The first result is the influence of the seeding in the 
process. In order to analyze the influence of seeding, 
the plots on Figure 3 are presented. It shows the 
results of operation trajectories, solution temperature 
evolution and supersaturation evolution for two 
batches that differ each other only in the seeding: the 
first one (non-seeded) has insignificant amount of 
seeds, while the second one has a considerable mass 
of crystals working as seeds. At these two 
simulations, a parabolic profile of coolant 
temperature, with negative second derivative, was 
employed. 
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Fig. 3: Operation curve, evolution of the solution 

temperature and evolution of the supersaturation 
for a non-seeded and a seeded batch 
crystallization 

 
The first plot in Figure 3 illustrates the operation 
curves (trajectories) for the two simulations. The 
operation trajectory is formed by the pairs of values 
of solution concentration and temperature followed 
during the batch time. The difference in the path 
followed during the process in the two cases is 
extremely visible. When no seeds are added to the 
crystallization process, the solution is cooled with 
constant concentration until the metastable zone limit 
is probably reached. An enormous quantity of 



crystals is generated by nucleation, releasing great 
amount of heat of crystallization (exothermic 
reaction), making the solution temperature to rise 
(second plot of Fig. 3) – what means that the cooling 
system was not able to remove all the heat released. 
As a consequence of the operation curve, a great 
peak of supersaturation is noted (last plot of Fig. 3). 
 
On the other hand, if the crystallization is conducted 
the same way, except by the addition of seeds, the 
cooling of the solution happens softly, while the 
concentration of adipic acid in solution decreases 
(first plot of Fig. 3), probably keeping the operation 
far from the metastable zone limit. It is kept at a 
reasonable distance from the equilibrium line (Lang 
et al., 1999). Not so high values of supersaturation 
are reached in the process (last plot of Fig. 3) and the 
nucleation is disfavoured. There is no great release of 
heat of crystallization and so there is no increase of 
solution temperature (second plot of Fig. 3). 
 
Apart from the influence of the seeding, other 
important factor in the crystallization performance is 
the rate of cooling during all the process. According 
to Mullin (1993), the use of natural cooling is not the 
best choice. By natural cooling, one understands that 
the coolant is passed through the exchange device at 
constant both temperature and flow rate. If natural 
cooling is used, the temperature inside the 
crystallizer decreases exponentially, making the 
supersaturation to increase very fast at the first 
moments of the process, favouring nucleation. As a 
result, at the end of the batch small crystals and a 
large CSD are obtained. But, if the cooling profile is 
characterized to have a soft decrease at the early 
stages and a more pronounced one at the end of the 
process, the operation is favoured (Mullin, 1993). 
 
Two seeded simulations that differ in the coolant 
temperature profile illustrate appropriately this 
feature. In the first one, natural cooling is simulated 
(coolant temperature and flow rate are both constant). 
In the next simulation, the same amount of seed is 
used, but a parabolic profile of coolant temperature, 
with negative second derivative, is employed. This 
last cooling rate is characterized to have a soft 
decrease at the early stages and a more pronounced 
one at the end of the process. The results of the two 
simulations can be observed in Fig. 4. When natural 
cooling is employed, a great number of fines is 
obtained (last plot in Fig. 4). A great peak of 
supersaturation occurs at the early stages of the 
crystallization process, what causes the appearance of 
thousands of nuclei. The concentration of solids in 
the suspension increases too fast in the first moments 
(first plot of Fig. 4). Except for the disadvantage of 
the great number of fines, this kind of cooling has the 
advantage of being able of extracting a great amount 
(mass) of solute of the solution, bringing them into 
crystals. 
 
When a negative parabolic temperature profile is 
employed, much less number of fines is obtained and 
the solid concentration evolves softly (see Fig. 4), 
with seeds growth and not so many fines being 
generated. This is a consequence of the evolution of 

the supersaturation during the batch, showing that it 
is desirable to avoid peak supersaturation in order to 
favour growth. This confirms the results from 
literature (Lang et al, 1999), indicating that the 
optimum temperature profile would produce no peak 
in supersaturation at all, being almost flat. However, 
the slow evolution of the process when the 
supersaturation is kept low implies in less extraction 
of solute from the solution (less mass is obtained 
compared to natural cooling). 
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Fig. 4: Evolutions of solid concentration and 

supersaturation, as well as the CSD in number at 
the end of the batch in a seeded crystallization 
with natural cooling and with a negative parabolic 
coolant temperature profile. 

 
At the study of the influence of the global heat 
transfer coefficient, its variation would express a 
variation in the coolant flow rate: the grater the value 
of the global heat transfer coefficient, the greater the 
coolant flow rate. The study showed that an increase 
in the fluid flow rate would be advantageous only in 
cases where the coolant temperature profile decreases 
slowly in early stages and sharper latter in time, what 
means to pass the coolant fluid with lower 
temperature and higher flow rate as the batch time 
passes. In this way, more mass is obtained in the 
process. 
 
The role of the power dissipation is evaluated in the 
present work and this variable has shown itself to be 
important in the distribution of crystals in the various 
classes (Fig. 5). It is an expected result, since the 
power dissipation is present in the expression of the 



mass transfer coefficient, which influences the 
growth rate in each class, as well as the intrinsic rate 
of agglomeration. It has shown to be not so important 
in the amount (mass) of crystals obtained. 
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Fig. 5: CSD in mass at the end of the batch in two 

simulations (ε = 0.02 and ε = 1.00). 
 
 

5. BATCH OPTIMIZATION STUDY 
 
In order to control batch cooling crystallization 
processes, it is necessary to have an off-line 
optimized cooling profile (set point profile), which is 
calculated through optimal control theory. The 
accurate model of the process is essential in 
obtaining this set point profile, because it is obtained 
through the solution of a non-linear optimization 
problem. A general non-linear optimization problem 
subjected to equality and inequality constraints h (x) 
and g (x), respectively, may be defined as: 
 

Min      f (x) 
s. t.:   hj (x) = 0, j = 1, 2, ..., m            (17) 

           gk (x) ≤ 0, k = 1, 2,...., p 
 
In the batch cooling crystallization optimization, the 
function to be minimized is set as a function of the 
final CSD and the problem constraints are the model 
equations, as well as physical constraints. 
 
On-line batch optimal operating policies are 
calculated through the use of a model-based 
controller, which uses the process model to predict 
future answers of the process and take actions in 
order to obtain the best product at the end of the 
batch. 
 
The optimal operating profiles may be successfully 
obtained by the proposed model together with the 
optimal control theory. 
 
 

6. CONCLUSIONS 
 
The developed model proved to be a good one, 
expressing representative results of the process. 
Literature results were satisfactory reproduced from 
the available information. The predictions generated 
through the model allow analyzing the impact of the 
process variables in the system behaviour. The 
proposed model may be used in a non-linear 
optimization problem, in order to find out the optimal 
cooling profile. 
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