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ABSTRACT 
A Neural Network Model is developed  for a Kraft digester which is a fundamental stage in the 
pulp production. A deterministic model is used to describe the main features of the process and 
will provide the data to verify the performance of the artificial neural network modeling. The 
paper shows that the artificial neural network is a good way to represent the process since it gives 
equivalent results when compared to deterministic model, and it is easier and cheaper to be 
developed. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

Pulp and paper industry is one of the most 
important productive activities and, in fact, it is 
used as a way of measuring the development of 
the country.  As it is the case for a number of 
processes, there is a large incentive for the 
development of cheaper and more 
environmentally, more friendly operation, but still 
enhancing product quality. This usually requires 
the use of a set of tools, as advanced control 
strategies and real time monitoring and sometimes 
optimization, which needs a suitable mathematical 
representation of the process. 
 
Even in a net integrated environment, as real time 
optimization, in order to find out which are the 
best operating conditions and policy, a reliable 
and easy to use mathematical model is required.  
A deterministic representation, which is 
developed from the mass and energy balance 
equations, is a convenient way to obtain a model 
of the process. On the other hand, artificial neural 
networks model is an alternative approach which 
may be very general and easy to be developed 
since many industrial process have  data 
acquisition system normally used to process 
monitoring. The objective of this paper is to show 

the potential of the neural network model to 
represent the kraft digester and to describe the 
most important steps to build up such kind of a 
model aimind the development of hybrid model. 
 
The approach based on neural network is 
particularly interesting when the phenomena 
taking place in the process are very complex so 
that deterministic description will require 
knowledge and information on heat and mass 
transfer coefficients, besides kinetics, to allow a 
reasonable process description. This is the ease for 
many chemical processes but particulary for 
pulping process. In fact in such process there is a 
lack of data for kinetic and especially transport 
data related to diffusion through the wood chips 
by the chemicals. In this case, industrial process 
data may be not enough and laboratory data are 
usually expensive and time consuming to be 
obtained. This is typically the case for the wood 
digester. Wood is a complex structure of fibres 
glued together by lignin. In order to make pulp, it 
is necessary to separate them, which can be done 
mechanically, chemically or by a combination of 
the two processes.  The focus here is on chemical 
pulp process, more specifically in kraft pulps 
since they are important industrial process.  The 
kraft process consists of a chemical reaction 



between the lignin and a cooking liquor, 
composed mainly of sodium hydroxide and 
sodium sulfide. However, the liquor can also 
attack other wood components, such as 
carbohydrates (cellulose, hemicellulose and 
others), degrading them, which is not desirable 
since they are the final product. A high quality 
pulp should have, among other properties, fibres 
in good conditions, for that they will contribute 
significantly for the resistance of the final paper. 
 
Although the composition of the wood used in the 
process will partially determine the properties of 
the paper, these latter are also altered during the 
manufacturing process. According to the 
operating conditions, the fibres can be more or 
less degraded, bleached or protected.  It will 
depend on the way in which the reactions develop, 
attacking mostly the lignin, or the fibres, which is 
carried out in the digester (Aguiar and Maciel 
Filho, 1997). 
 

2. KRAFT DIGESTER 
 
The continuous digester is a large pressurized 
vessel, divided into zones (Figure 1). The first 
zone is responsible for the impregnation of the 
wood with liquor. It is very important that the 
wood receives liquor entirely and uniformly, so 
that, at the end of the cooking, the pulp is uniform 
and the amount of rejects is minimum. A heating 
zone follows the impregnation zone, leading the 
process to the suitable temperature for the lignin 
reaction which predominates over the 
carbohydrates reactions. The chips stay in the 
cooking zone for a period, and then proceed to the 
washing and discharge zones.  The liquor is added 
and extracted from the digester in different areas, 
in order to keep the reaction happening properly, 
and its flow patterns vary from zone to zone 
(Assumpção et al.,1988). 

 
Figure 01 Continuous Kraft Digester  

3. FIRST PRINCIPLES MODEL 
 
The kraft pulping of wood is essentially based on  
the simultaneous occurrence of two phenomena: 
the first, of a physical nature, involves the mass 
transfer of the cooking chemicals from the bulk 
liquor surrounding the wood chips to the liquid 
filling the pores of the wood structure; and the 
second is related to the chemical reactions 
between these reactants, inside the chips, and the 
main wood components (i.e., lignin and 
carbohydrates). Because of them, it is of great 
importance for the understanding of the pulping 
process to quantify their behavior (Egas et. al., 
2002). 
 
Theoretically, first principles model should 
reproduce the modeled process in any situation, 
even in extreme conditions. For that reason, their 
application in simulators and control instruments 
are spread in various classes of processes. Many 
cooking models, with different approaches, can be 
found in literature. One of the earliest kinetic 
model was developed by Vroom (1957), who used 
an Arrhenius type expression for the reaction rate 
temperature dependence to derive the “H-factor”. 
The H factor, which combines the cooking 
temperature and cooking time into a variable, is at 
the heart of many control schemes used for kraft 
pulping. H-factor models that are highly empirical 
in nature are very useful for batch pulping, but 
they are not suitable for continuous flow digesters 
such as the kamyr digester. The major  
disadvantage of using the H-factor is that it does 
not include mass transfer and the variation of 
chemical concentration during the process.  
 
There are several different approaches to the 
chemistry of the process in the literature.  Most of 
them use the same general form (Saltin, 1992), 
although some simplifications and modifications 
are usually applied (Aguiar, Maciel Filho, 1997): 
-dW/dt=(k1[OH-]a+k2[OH-]b[HS-]c)(W-W∞)  (1) 
where: W is the wood component concentration;  
k1and k2 are rate constants that are correlated as a 
function of temperature using the Arrhenius 

equation ( )E
RTk Ae

− ∆
= ; W∞ is  the wood 

component after  infinite time; a,b and c are the 
kinetic orders; [OH -] and [HS-] are the OH- and 
HS- concentrations, respectively, and t is time. 
 
Some approaches consider a three step reaction, 
with three differential equation of the same type 
above, one for each phase (Gustafson et al., 1983). 
Gustafson’s model predicts the effect of 



inadequate diffusion on pulping properties but 
cannot predict the consequences of incomplete 
penetration on the pulping performance and final 
pulp properties. Another approach divide the 
lignin into high and low reactivity lignin, 
according to the kind of ethers they contain 
(Saltin, 1992; Mirams and Nguyen, 1994). The 
model developed by Mirams and Nguyen (1994), 
which is based on batch cooking process includes 
mass transfer and intrinsic reaction kinetics based 
on parallel reactions of lignin, hemicellulose and 
cellulose.  
 
This study considers the simultaneous reactions of 
two lignins, one reacting faster and the other 
suffering a slow reaction. There is also a third 
type of lignin, in a very low concentration, that 
does not react with cooking liquor. It is assumed 
the presence of two types of cellulose and 
hemicellulose, which do not consume the sulfide 
ion. Unlike most models, this one considers a 
simple kinetic equation for the extractives. Wood 
influence is accounted for in the model through 
density and porosity (Mirams and Nguyen, 1994; 
Aguiar and Maciel Filho, 1998). A diffusion term 
is included to describe the transport of cooking 
chemicals, assuming the same diffusion 
coefficient for both, OH- and HS-. 
 
The deterministic model equations can be written 
as follows: 
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The orthogonal collocation technique was used to 
solve the partial differential equations (the 
equations involving diffusion), and the complete 
system was solved by the LSODE integrator. One 
inconvenience when generating deterministic 
models is that parameter estimation methods 
require acquisition of data not readily available 
from mill DCS. For instance the concentrations of 
substances that are not usually measured at the 
mill. In order to overcome such difficulties, 
laboratory data is used to adjust mill process 
parameters (Aguiar, 1997). 
 
 

4. NEURAL NETWORKS 
 
The most common network used for process 
modeling is the feedforward neural net. Such net 
contains at least one input layer, one output layer 
and one hidden layer. The connections between 
neurons (or nodes) in this  type of network are 
transmitted forward, from each neuron in a layer 
to all neurons in the following layer, as shown in 
Figure 2.  Each process variable value is given to 
one node in the input layer. The neurons on the 
first hidden layer receive a weighted summation 
of the signals from input nodes, added to a bias 
term. Inasmuch as the weights are specific for 
each connection, and the bias terms are particular 
for each receiving node, all the neurons will 
receive a distinct value. The summed values are 
altered by a transfer function which transforms the 
signal to a value in a limited range (Figure 3).  
The sigmoidal function, which transfers numbers 
to the [0,1] range, is usually used, but other 
functions can be applied, such as sine, tangent, 
etc.  The transformed value will be the output of 
the node and will be transmitted to the next layer 
in the same manner, and from one layer to the 
other until the output layer releases the net output. 
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Figure 2  Feedfroward neural network information 
transference. 
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Figure 3   A single neuron 
 
Many backpropagation algorithms can be found in 
literature. The algorithm used in this work is the 
Generalized Delta Rule (GDR) algorithm, a 
gradient descent method that minimizes the sum 
of squares of the residual (Savkovic-Stevanovic, 
1994). The amount and quality of training sets are 
essential for the success of the artificial neural 
network simulations. The number of hidden layers 
and the neurons in each hidden layer can be tested 
in order to obtain better results.  Also the learning 
rate, a coefficient equivalent to a step size and the 
momentum term, which keeps the direction of 
descent from changing too rapidly from step to 
step can be altered in order to improve the net 
efficiency.  These parameters affect not only the 
accuracy of outputs, but also the training time, 
which can be considerably long in some cases 
especially for on-line trainny (Aguiar and Maciel 
Filho, 1997). 
 
This ability to recognize and to reproduce cause-
effect relationships through training, and filtering 
noise or irrelevant data, and yet the possibility of 
working with multiple input and output vectors 
(MIMO), make neural networks efficient in 
representing even nonlinear systems. That justifies 
the choice of neural nets to model the relationship 
between process operation and its product 
characteristics in complex processes.  
Furthermore, the models based on this method 

may be developed by using process variables that 
are familiar to mill personnel and easily accessed 
as inputs, in order to predict outputs that are 
usually difficult or expensive to obtain. Used in 
this fashion, the neural network can work as a 
process predictor. In this paper the neural network 
used to predict kappa number from process 
conditions will be described. The usual 
measurement of pulp properties and 
delignification extent is the kappa number, which 
indicates the amount of lignin left in the pulp. 
 
Nevertheless, neural nets have their limitations. 
The training step is very time consuming, 
especially with industrial noisy data.  They can 
not extrapolate far beyond their training range, 
and also do not allow interpretation of the 
phenomena they are simulating. An alternative 
approach to pick up advantage of both 
deterministic and Artificia l Neural Network  
approach is to develop a hybrid model as follow. 
 

5. HYBRID MODEL 
 
Although mathematical models can describe 
relatively well some behavior of the process, they 
make a number of assumptions that turn them into 
approximated models, and often are not able to 
reproduce properly the nonlinearities of the 
systems. On the other hand, neural networks 
represent non linear patterns properly, but do not 
allow extrapolation. Table 1 describes the 9 inputs 
variables used on Hybrid Model.. 

 
Table 1 - Selected input variables  

 
Variables Unities 

Total effective alkali g/l NaOH 
Temperature (top) oC 
H Factor (top) _ 

Temperature (CD1) oC 
H Factor (CD1) _ 

Effective alcali (CD1) g/l NaOH 
Temperature (CD2) oC 
H Factor (CD2) _ 

Effective alcali (CD2) g/l NaOH 
 
This work proposes a hybrid model, based on the 
known part of a first principle model, combined to 
a neural network to account for the phenomena 
that is not comprised in the deterministic 
equations, in order to overcome limitations of 
both methods. 
 



Hybrid models may be developed in many 
different combinations.  Knowledge of the process 
may be used to impose constraints (as 
inequalities) to the neural model. The network can 
also be used as default, but the deterministic 
model should be used when the variables are out 
of training range.  Also, the mathematical model 
may be used in situations when data is not 
available.  A common approach is having the first 
principles model as the basis, with the neural net 
calculating unknown parameters. Still, the 
network can be used to learn the deviation 
between the mathematical model output and the 
aimed output.  In fact, this may be easier than 
learning the complex relationships between input 
variables and process results. Other possible 
approach is using the deterministic model as 
reinforcement for the function relationship 
between inputs and outputs. 
 
The choice of how to combine both parts depends 
on the precedence of data or first principle system 
knowledge, and it is particular to each case. The 
approach considered in this work uses the 
mathematical model as a reinforcement for the 
relationship between inputs and outputs. The 
mathematical model receives information from 
process variables and generates the kappa number 
according to the kinetic equations. The result is 
then fed into the net along with other process 
variables, and the net yields a final kappa number. 
The scheme is described in Figure 4. 
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Figure 4  Hybrid model scheme  
 
The mathematical model receives information 
from process variables and generates the kappa 
number according to the kinetic equations. The 
result is then fed into the net yields a final kappa 
number (Figure 4). Training is carried out as 
described for a pure network training section.  
However the mathematical model calculates an 

extra input variable, which is the calculated kappa 
number, for each training set. A hybrid network 
using the neural net to estimate the unknown 
parameters is other development not considered in 
this work. 
 

6. RESULTS 
 

Many adjustments in network configuration and 
analysis of the input variables set must be done in 
order to obtain the best network configuration for 
the modeled process. The net was initially set to 
be trained with one hidden layer and all 22 
available variables. Table 2 describes all the 22 
inputs variables. However, it did not converge to 
the predetermined minimum error. Changes in net 
configuration were done gradually until best 
results were obtained. The parameters to be 
optimized in a neural network are: number of 
layers and neurons in each la yer, momentum term, 
offset, learning rate, error tolerance, transfer 
function and random initial weights algorithm. 
 

Table 2 - Initial input variables 
 
Variable Unities 
Production rate RPM/h 

Total white liquor flow m3/h 
Wood density kg/m3 

Total Aakali charge % 
Total effective alkali g/l NaOH 

Sulfidity % 

Temperature (top, CD1, CD2) oC 
H Factor (top, CD1, CD2) _ 

Aakali charge (top, CD1, CD2) % 
Effective alkali (top, CD1, CD2) g/l NaOH 

White liquor flow (top, CD1, CD2) m3/h 

 
The predicted variable in the model was the kappa 
number, due to its importance to the next sections 
of the process and its significance for mill 
personnel. Regression and graphical analysis of 
the data were carried out in order to eliminate the 
variables that do not affect kappa number 
significantly.  As a result, only 9 variables were 
used to feed the input neurons in the network. 
Figure 5 illustrates the improvement obtained for 
kappa number prediction with previous data 
analysis. 
 
The number of industrial profiles was not the desired 
number of training sets for a neural network but it 
reflects the potential to be used even with relatively 
few data.  In any case, it is expected that when more 



data is gathered, network prediction will improve 
considerably. The hybrid network was trained in the 
same way. The tendency dictated by the 
mathematical model result is responsible for a slight 
improvement in network prediction, as indicated in 
Figure 6. The training time, when measured as 
number of computational iterations, was shorter for 
the hybrid network than for the pure neural net.  This 
is a relevant information when on-line applications 
either for advanced control or process optimization 
are desired. 
 
 

 
Figure 5 Kappa prediction 
 

 
 
Figure 6 Comparison between hybrid model and 

neural model predictions  
 
 
 

7. CONCLUDING REMARKS 
 

Both, neural network and hybrid network models 
produced similar results, showing to be adequate 
tools to model an industrial cooking process, even 
with a reduced number of training sets. The 

simple approach used to combine first principles 
knowledge and neural network features produced 
improved results when compared to the pure net.  
However, it should be seen as the starting point 
for a more complex model, where process 
knowledge and pattern learning capacity can be 
better combined in order to improve prediction 
capability and to provide a more complete 
approach of the process (when all variables and 
relevant phenomena influencing results are 
accounted for). 
 
The expected benefit is that simulation program 
assists in decision making on process policies 
according to the desired product characteristics, 
and enables mill personnel to correct the process 
before undesired pulp grades are produced.  
Furthermore the software can be used to design 
specific pulp characteristics that are requested by 
customers, and can be achieved by specific 
parameters controlled in the process.  It can also 
be a useful tool for training operators and 
engineers. The software was written in Fortran 77 
(public domain) with an easy t o use interface. 
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