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Abstract: A new approach to the design of Model Predictive Controller (MPC)
that simultaneously addresses the actuator saturation and backlash is proposed
in this paper. The discrete characteristics of the actuator backlash allows one to
reformulate the input constraints as a set of mixed integer linear inequalities. As
a result, the MPC is designed by solving a Mixed-integer Quadratic Programming
problem. Simulation results are presented to show how this new approach performs
as compared to the existing techniques of the backlash compensation when they
are applied to an industrial case study.
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1. INTRODUCTION

Actuators, e.g. control valves in most industrial
processes, play an important role in automatic
control systems. As commonly the weakest link
of the control loop, the control valve accounts for
about 32% of ”poor” or ”fail” control loops [Miller
and Desborough, 2001]. A recent survey in Yang
and Clarke [1999] indicated that 30% of all control
loops in Canadian paper mills were oscillating
because of valve problems. Also, [Ruel, 2000]
observed a similar problem in refinery plants. Poor
control valve performance is therefore the single
biggest source of controller-induced variability.

Control valves contain static (e.g. saturation) or
dynamic (e.g. backlash) non-linearities as well
as other non-linear characteristics such as stic-
tion, hysteresis, etc [Corradini and Orlando, 2002].
Model Predictive Control (MPC) has had a sig-
nificant and widespread impact on industrial
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process control because of its ability to explic-
itly handle actuator saturation. The performance
of MPC, however, is sensitive to model uncer-
tainty [Kothare et al., 1996]. Since the dynamics
of actuator backlash is not accommodated in the
MPC design formulation, the existence of back-
lash results in uncertainty in the plant inputs. The
dynamics of actuator backlash introduces a limit
cycle in the proximity of the steady state operat-
ing points even if the controlled system behaves
linearly. As a result, the MPC performance would
significantly degrade if the actuator backlash is
present in the feedback loop. Various approaches
have been adopted for compensating the backlash
effect, including nonlinear inverse strategy [Corra-
dini and Orlando, 2002; Tao and Kokotovic, 1993;
Nordin and Gutman, 2002; Chow and Clarke,
1994], or re-tuning strategy Ghazzawi et al. [2001].

In this paper, we propose a tactical approach that
simultaneously addresses the actuator backlash
and saturation within the MPC design framework.
This approach is adopted to alleviate the draw-
backs of the re-tuning strategy (i.e. a sluggish



response as well as the trial-and-error nature), and
the nonlinear-inverse strategy (i.e. in the case of
encountering actuator saturation limits).

2. MPC DESIGN FRAMEWORK

Assume that the system is described by the fol-
lowing linear time-invariant model:

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) (2)

with x(k) is the state vector ∈ Rn, u(k) is the
input vector ∈ Rm, and y(k) is the output vector
∈ Rm. The matrices (A,B,C) are associated with
the state, input and output matrices, respectively,
and are assumed to be stabilizable and detectable.

Consider the problem of tracking a constant set-
point ys and rejecting a time-varying output dis-
turbance {d(k)}: it is wished to regulate the error
e(k) to zero: e(k) = y(k)+(d(k)−ys). Then, let us
define de as the external signal: de(k) = d(k)−ys.
Given knowledge of the external signal de and
the current state measurement x(0) (or its on-line
estimates), the MPC design is aimed at finding the
M -move control sequence {u(0), u(1), . . . , u(M −
1)} that minimizes the finite-horizon performance
index:

J0 = [x(P )− xs]T Ψf [x(P )− xs]

+
P−1∑
k=0

eT (k)Ψe(k)

+
M−1∑
k=0

[u(k)− us]T Φ[u(k)− us] (3)

where Ψ ≥ 0, Φ ≥ 0, Ψf ≥ 0. In (3), P is the
prediction horizon, M ≤ P is the control horizon.
This optimization can be translated into a convex
QP problem as:

UOPT = arg min
U

LU≤K

UT WU + 2UT V (4)

where W and V are the dynamic matrices ob-
tained from the linear model for the P prediction
horizon of the outputs, and the M -move of input
sequence.

3. MODEL OF BACKLASH AND ITS
INVERSE

Fig. 1 describes an input-output map of the ac-
tuator backlash. Let us define two quantities to
represent two situations; (i) if uI(t) is inside the
backlash and on the positive side of the backlash,

Fig. 1. An input-output map of backlash

(a) dp(t) (b) dn(t)

Fig. 2. Computation of dp(t) and dn(t)

the distance from the positive boundary is defined
as dp (see Fig. 2(a)), and (ii) if uI(t) is inside
the backlash and on negative side, the distance
from its negative boundary is defined as dn (see
Fig. 2(b)). Without loss of generality, we assume
that mb = 1. Then, we have:

dp(t) = [up(t) + d]− uI(t)

dn(t) = [up(t) + (−d)]− uI(t)

Hence, we obtain the following backlash model:

up(t) =

 uI(t)− d : ∆uI(t) > dp(t− 1)
uI(t)− (−d) : ∆uI(t) < dn(t− 1)

up(t− 1) : otherwise

The inverse of the backlash model is then given
as:

uI(t) =

 u(t) + d : ∆u(t) > 0
u(t)− d : ∆u(t) < 0

uI(t− 1) : ∆u(t) = 0

Clearly, the nonlinear inverse strategy of com-
pensating the backlash effect is, in principle, to
bump up the controller outputs without changing
the input direction. Based on this property, we
integrate the backlash inverse model within the
MPC design framework.

4. MIQP-BASED DESIGN OF MPC

4.1 Reformulation of Input Constraints

In the QP-based MPC design, the input (satura-
tion) constraint is given by:

umin ≤ u(k) ≤ umax (5)

To incorporate the backlash dynamics within the
MPC computational framework, we reformulate



the input constraints so that the inverse model
of the actuator backlash is integrated within the
MPC design framework as in Fig. 3.

Fig. 3. An MPC scheme integrated with the backlash

nonlinear inverse

By applying this integration strategy, uI(k) can be
represented in terms of u(k) with three different
conditions depending upon the value of ∆u(k).
The inverse model of the actuator backlash dic-
tates that, for example, if the input change is
positive (or ∆u(k) > 0), the MPC should produce
its output uI(t) = u(k) + d. Similarly, for a neg-
ative input change (or ∆u(k) < 0), the resulting
MPC output is reduced by d. For a zero input
change, the previous value of uI should be used.
Therefore, the inclusion of the backlash within the
MPC computational framework is, in essence, to
produce optimal input signals that are outside the
dead-band region.

That basic idea of incorporating the actuator
backlash is systematically implemented by refor-
mulating the input constraints for the MPC de-
sign. Let us introduce a set of logical variables δij ,
for j = 1, 2, 3, for representing the input change
conditions (e.g. positive, negative, or zero). Then,
we impose the following propositional logics on
the inputs u(k):

δi1 = 1←→ ui(k)≥ di (6)

δi2 = 1←→ ui(k)≤−di (7)

δi3 = 1←→ ui(k) = 0 (8)
3∑

j=1

δij = 1 (9)

for i = 1, 2, ...,m, with m is the number of manip-
ulated inputs in the system. The propositional log-
ics specified in (6), (7), and (8) can be transformed
into a set of mixed-integer linear inequalities, i.e.
linear inequalities involving both continuous vari-
ables u ∈ Rm and logical variables δ ∈ {0, 1}, by
adopting the framework described in Bemporad
and Morari [1999]. The set of mixed-integer linear
inequalities constraints for the ith input is then
given by:

ui(k)− di ≥ (uimin
− di)(1− δi1)

ui(k)− di ≤ (uimax
− di)δi1

ui(k) + di ≥ (uimin
+ di)δi2

ui(k) + di ≤ (uimax + di)(1− δi2)

ui(k)≥ uimin(1− δi3)

ui(k)≤ uimax
(1− δi3) (10)

for i = 1, 2, ...,m, with m is the number of
manipulated inputs in the system.

Note that if di = 0, (10) reduces to uimin ≤
ui(k) ≤ uimax

. This implies that if the backlash is
not active, we should assign di = 0. Otherwise, the
MPC controller would have a sluggish response (or
even infeasible solution) because of the shrinkage
of feasible input constraints.

4.2 MIQP formulation

The MPC design is now aimed at determining its
optimal u(k) at each sampling time subject to the
reconfigured input constraints in (10). At every
time step, the dead-band region is completely
avoided by suppressing a further movement of the
input to avoid its direction change. This is done by
activating one and only one logical variable at a
time, and at the proximity of steady states where
the backlash is active.

We show that this formulation belongs to an
MIQP optimization problem. Let us consider, for
illustration only, the case of m inputs and control
horizon, M = 1. The linear inequality constraints
in (10) is then re-arranged as:



−1 θ 0 0
−1 0 Ω 0
−1 0 0 µ
1 α 0 0
1 0 β 0
1 0 0 τ
0 1 1 1





u1

...
um

δ11

...
δm1

δ12

...
δm2

δ13

...
δm3



+



Umin

−D
Umin

−D
−Umax

−Umax

−I


≤ 0 (11)

and



1 = diag[11, . . . , 1m]

θ = diag[−(u1min
− d1), . . . ,−(ummin

− dm)]

Ω = diag[(u1min
+ d1), . . . , (ummin

+ dm)]

α = diag[−(u1max
− d1), . . . ,−(ummax

− dm)]

β = diag[(u1max + d1), . . . , (ummax + dm)]

µ = diag[u1min
, . . . , ummin

]

τ = diag[u1max
, . . . , ummax

]

Umin = [u1min
, . . . , ummin

]T

Umax = [u1max , . . . , ummax ]T

D = [d1, . . . , dm]T ; I = [11, . . . , 1m]T

Define a matrix Q4m×4m and a vector b4m×1 as

Q =


W 0 . . . 0

0
...

. . . 0
...

...
. . . 0

0 0 . . . 0

 ;b =


2V
0
...
0

 (12)

By defining the mixed linear inequalities of (11)
as Cz + ℘ ≤ 0 with z = [zc, zd]T , where zc

are the continuous variables u, and zd are logical
variables δij , the MPC optimization problem can
be expressed as:

min
z

JQP , zT Qz + bT z (13)

s.t.

Cz + ℘ ≤ 0

z =
[
zc

zd

]
zc ∈ Rnc

zd ∈ {0, 1}nd

This is a Mixed Integer Quadratic Programming
(MIQP) problem. Note that the matrix Q in (13)
is positive semi-definite - an important criteria
that is necessary if such an optimization needs to
be solved on-line for a global optimality.

Since the proposed technique considers both the
logical conditions and saturation simultaneously
during the determination of the MPC optimal
inputs, we avoid the problem of producing the
infinite input for compensating the backlash due
to the input saturation as is the case when the
nonlinear inverse strategy is applied.

4.3 Stability Analysis of MIQP-based MPC

In this section, we address the stability condi-
tion for the MIQP-based MPC. For this purpose,
we follow the stability analysis of Bemporad and
Morari [1999] for the general system of Mixed

Logical Dynamical. Define the states and inputs
equilibrium as (xs, us), and let the logical vari-
ables be definitely admissible, meaning that δs

corresponds to the desired steady-state values for
the logical variables. Let t be the current time t,
and x(t) the current state. The MPC optimization
problem (3) can be equivalently expressed in the
general form of Mixed Logical Dynamical system
(MLD) as the following,

min
u

J ,
M−1∑
k=0

‖ u(k)− us ‖2Φ

+ ‖ δ(k|t)− δs ‖2R
+ ‖ x(k|t)− xs ‖2Ψ (14)

s.t.

x(M |t) = xs

x(k + 1|t) = Ax(k|t) + Bu(k)

y(k|t) = Cx(k|t)
E2δ(k|t)≤E1u(k) + E3 (15)

where Φ > 0;R ≥ 0;Ψ > 0 and E1, E2 and
E3 can be straightforwardly defined from (11).
Assume that the optimal solution is given by U∗ =
{u∗(0), u∗(1), . . . , u∗(M − 1)}, and the receding
horizon strategy is applied as u(t) = u∗(0) before
repeating the whole optimization procedure at
time t + 1.

Theorem 1. Let (xs, us) be an equilibrium pair
and δs definitely admissible. Assume that the
initial states x(0) is such that a feasible solution
of problem (14) exists at time t = 0. Then,
the optimal inputs obtained by solving (14)-(15)
stabilizes the system in the following sense:

limt→∞x(t) = xs; limt→∞u(t) = us;

limt→∞ ‖ δ(k|t)− δs ‖2R= 0

while fulfilling the constraints (15).

Proof. The proof follows from standard Lya-
punov arguments. Let U∗ denote the optimal con-
trol sequence {u∗(0), . . . , u∗(M − 1)}. Let

V (t) , J(U∗, x(t))

denote the corresponding value attained by the
performance index. Also, let U1 = {u∗(1), . . . , u∗(M−
2), us}. Then U1 is feasible (but not optimal) at
time t+1, along with the vectors δ(k|t+1) = δ(k+
1|t) for k = 0, . . . ,M −1. Also δ(M −1|t+1) = δs

since x(M − 1|t − 1) = x(M |t) = xs and δs

definitely admissible. Hence,

V (t + 1) ≤ J(U1, x(t + 1)) = V (t)− ‖ u(k)− us ‖2Φ
− ‖ δ(k|t)− δs ‖2R − ‖ x(k|t)− xs ‖2Ψ



and V (t) is decreasing. Since V (t) is lower-
bounded by zero, there exists V∞ = limt→∞V (t),
which implies V (t+1)−V (t)→ 0. Therefore, each
term of the sum

‖ u(k)− us ‖2Φ + ‖ δ(k|t)− δs ‖2R + ‖ x(k|t)− xs ‖2Ψ
≤ V (t)− V (t− 1)

converges to zero as well, which proves the theo-
rem.

Note that our result on the stability analysis of
the MIQP-based MPC is a subset of the stability
result of Bemporad and Morari [1999], where in
their case, the integer variable may appear in the
state and input variables.

5. APPLICATION TO AN INDUSTRIAL
FCCU PROCESS

The FCCU case study was taken from [Grosdidier
et al., 1993]. At the MPC level, we control seven
variables, denoted as y1, ..., y7 by manipulating six
variables u1, ..., u6, see [Grosdidier et al., 1993]
for details. Three proportional-integral (PI) con-
trollers were applied in the flows of the combustion
air, the hot gas oils and the combined cold gas and
recycle oils (u1, u2, u3). Two PI controllers were to
control the feed preheat (u4) and the riser outlet
temperature (u5). Recycle flow (u6) is regulated
by adjusting the output of a hand controller. Each
variable is constrained by their associated high
and low limits. All manipulated variables are at
their ideal resting values (IRV), which is assumed
to be their steady-state, except for combustion air
flow (u1) which is allowed to move freely. In this
study, we consider the following conditions: (1)
Backlash is known to be active only in the hot
feed flow (u2) valve; (2) Prediction horizon, P is
fixed at 20; Control horizon, M is fixed at 1; and
(3) The proposed MIQP MPC is then compared to
the Nonlinear Inverse strategy ([Chow and Clarke,
1994]) and to the strategy of re-tuning λ, where λ
is the element of Φ.

5.1 Effect of Backlash

In response to a disturbance change of +2.5%
in u2, Fig. 4 shows the existence of backlash in
u2, where its effect propagates to other input
channels because of the interacting nature of the
FCCU process. This backlash result in a signif-
icant degradation in the performance of MPC
designed using the standard approach, producing
oscillations in the manipulated inputs and the
controlled variables. In the presence of backlash
of 2.5%, a small oscillation in the controller out-
puts makes the backlash active. Furthermore, we

should note that the backlash in the u2 valve is not
active when the change in the controller outputs
is large; however, as the movement nearing the
steady-state and the controller outputs are still
oscillating, the backlash is then active.

(a) ideal (b) w/backlash

(c) ideal (d) w/backlash

Fig. 4. u2 and u3 response with and without backlash.

5.2 MIQP vs. Re-tuning Strategies

Figs. 5 and 6 show the comparison of MIQP-
based MPC with the strategy of re-tuning λ. The
input moves u2 for the different compensation
methods are shown in Fig. 5. Fig. 6 shows the
corresponding responses of the outputs for: the
standard MPC with no backlash (i.e. ”ideal”),
MIQP-based MPC design (i.e. ”MIQP MPC”)
and the re-tuning of λ.

(a) MIQP MPC (b) Retune λ

Fig. 5. Input signal u2 for different approaches in the
presence of backlash

Fig. 6. Fresh cat VP in the presence of backlash

The re-tuning strategy, by increasing the move
suppression factor λ, produces a more sluggish
response in the manipulated and controlled vari-
ables (see Fig. 5(b)). This compensation effect
is similar to the case when we apply the MIQP



approach; however, note that the movement of
u2 in the transient is different. This is due to
the fact that the MIQP technique suppresses the
movement on u2 only at the proximity of steady
state in order to eliminate the oscillations caused
by the backlash. On the other hand, the re-tuning
strategy avoid the backlash by imposing a sluggish
response of the controller from the beginning.
This re-tuning strategy, however, results in a poor
disturbance rejection as shown in Fig. 6.

5.3 MIQP vs. Nonlinear Inverse Strategies

We study the case when the valve of u2 is op-
erating near the saturation limit by considering
the disturbance of -2.5%, with 5% backlash. The
nonlinear inverse method fails to eliminate the
backlash since the saturation limit eclipses the to-
tal amount of energy required to compensate the
backlash (see Figs. 7 and 8(d)). The MIQP MPC
method, on the other hand, produces a better
performance than the nonlinear inverse strategy
as it anticipates the saturation limits in u2 when
determining the optimal input moves.

Fig. 7. Fresh cat VP; valve u2 near saturation under

disturbance change and 5% backlash

(a) ideal(no backlash) (b) standard MPC

(c) MIQP MPC (d) Nonlinear inverse

Fig. 8. Signals in u2 for disturbance change with valve u2

near saturation in the presence of backlash

6. CONCLUSIONS

In this paper, we have extended the MPC design
methodology for addressing simultaneously the
actuator backlash and saturation. We have shown

that a set of logical constraints for the inputs
has been produced so that the MPC design has
been formulated as a mixed integer programming
problem. Simulation studies using the FCCU pro-
cess has been presented to compare the developed
approach with other techniques i.e. the nonlinear
inverse and re-tuning strategies. The MIQP-based
MPC design has outperformed other compensa-
tion methods in the presence of both actuator
saturation and backlash.
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