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Abstract : A two-step design t o control integrator processes in an SISO or MIMO system
is proposed. For an SISO system, the first step of the design is to stabilize the integrator 
process with P&D modes  in a secondary loop  to achieve good stability robustness and
modest performance. In the second step of design, a P&I controller in the primary loop is
derived to improve the overall performance. By this way,  an equivalent two-element
control system comprising of a single PID control loop and a pre-filter applying on the 
set-point command is derived. T he same design approach is then applied to design multi-
loop SISO controllers for MIMO processes , where integrating behavior exists. By
employing the same two-step design and the direct method of Huang et al. (2003), 2-df
multi-loop PI/PID controllers can be obtained. The Simulation results show that this 
presented method is effective for both SISO and MIMO process with integrators.
Copyright © 2003 IFAC
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1. INTRODUCTION

The integrating processes, serving as material and
energy inventory, or, as retention of material for 
processing and heat transfer, are found in many 
chemical plants. For years, PID controllers have been 
used to control such processes. For inventory
purposes, usually, proportional controllers with wide 
proportional bands will be sufficient, but, for tight 
control purposes, the controller design encounters 
difficulties due to the existence of integrator and 
process dead-time. In the past, study of controller 
design has been mostly focused on open-loop stable 
processes, until lately, the control of  integrating 
processes starts to attract increasing attentions from 
the researchers in this field. Many PI or PID 
controllers  have been proposed (Chien and Fruehauf
1990; Tyreus  and Luyben, 1992). But, Kwak et al. 
(2000) showed that a conventional simple feedback 
system with PI/PID controller will not be able to give 
the prescribed and desired response unless they use
advanced control configuration. Most popular way of 
design is to use a Smith-predictor type of controller
(Kwak, et al., 2001; Chien, et al., 2002; Hang et al., 
2003) or use a time-optimal controller (Visioli, 2003).
Nevertheless, they are either sensitive to modeling 
errors or difficult for practical uses. Lately, the
control structure incorporating as cascaded loop s  is 
also adopted to design control for integrating
processes, for examples: Kwak et al. (2000), etc. By
the use of the cascaded loop s, a two-element control 
system is resulted . Examples include the PID-P
controller of Wang and Cai (2002), and the PI-PD
controller of Kaya (2003). Although the resulting

performances are slightly poorer than those using
predictors , the 2-df control lers are simpler and can be 
implemented with commercial controller products.

For MIMO processes to be controlled with multiple 
SISO controllers, the problem becomes more
challenging then they are standing alone as SISO
loop systems, when the process has integrator(s). 
Due to the interaction among the loops, the SISO 
designed controllers are difficult to be stabilized in 
the MIMO environment. A late work of Huang et al. 
(2003), decomposes the design of multi-loop
controlled MIMO system into that of independent 
simple SISO loops based on the assumption of open-
loop stable dynamics. In order to follow the same 
design approach for MIMO process with integrator(s), 
a two-step design approach is thus proposed. In
this paper, a design method of multi-loop PI/PID
controller to control MIMO processes that have 
integrators and input dead time is proposed. For
SISO controllers in the multi-loop system, a simple 
two-element controller will be derived. The two-
element configuration for the SISO control system is 
similar to the one of Kaya (2003). The cascaded 
system is implemented as an equivalent single loop 
system with a pre-filter at the set-point input (see 
Figure 1). In the following text, in the first place, a 
design method for the two-element SISO controller 
will be derived. Incorporation of this two-element
controller design into the design of a multi-loop
system will then follow. Guidelines for loop pairing 
using the RGA analysis are also included.



+

-

r y

L

u
pgPIDgfg

Fig. 1. Two-element  control structure
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Fig. 2. Equivalent  cascaded feedback loop for design.

2. DESIGN FOR TWO -ELEMENT CONTROL 
SYSTEM

The two-element control system of Fig.1 will be 
derived as an equivalence to the control
configuration in Fig. 2. The design of the internal 
loop in Fig. 2 is aimed to stabilize the integrating 
process whose dynamics can be represented by a

pg of the following:

l Process 1
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In fact, not only process having integrators, the above 
transfer functions can represent many slow dynamic 
processes also. In the cascaded system, a PD
controller, ( )2cg s , is used in the internal loop which 

stabilizes the integrating processes with sufficient 
robustness . A PI-type controller, ( )1cg s , is used to

control the resulting closed internal loop  (the part 
boxed by dotted line). T he PD and PI controllers 
used are considered to have the following forms:
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Notice that, the product of ( ) ( )2c pg s g s has an

integration mode due to the integrator in ( )pg s , and

can be written in the following form:
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The PD controllers are  selected to compensate for the 
open-loop transfer functions to become the following
standard forms individually, that is:
l For Model 1
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l For Model 2
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Where, the value of 0k is chosen as 0.76 in Eq.(6) 

and 0.6 in Eq.(7) so that each ( )lpg s  has sufficient 

gain margin and phase margin. According to the 

( )lpg s  chosen, the parameters of PD controllers are 

determined.  The complementary sensitivity function,
( )h s , can thus be written as:
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Since 0k is chosen to give modest performance for 

the internal loop, ( )h s  in Eq.(8) can be approximated

by a first-order plus time delay model, that is:
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As θ and
0k  are the only parameters,

mτ  and 
mθ

can be written as functions of these two parameters.
As has been studied in the range of θ  = 0.2 to 10, 
the values of 

mτ  and 
mθ  for different values of

0k

are shown in Fig. 3 and Fig. 4. T he data are also
correlated and given in Table 1.

Since the dynamics of the internal loop is represented 
by an FOPDT model, a PI controller can be used to 
compensate for the internal loop to become the 
standard form of Eq. (7).
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Fig. 3. Comparison of actual values and fitted 

equations (solid line) for mτ .
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Table 1.FOPDT model parameters of internal closed-
loop for different loop transfer function.

Loop
transfer
function

Loop
gain

Time constant Time delay

0.2~10θ =
( )1lpg s 0.76 0.3139mτ θ= 1.084mθ θ=

( )1lpg s 0.6 0.663mτ θ= 0.9264mθ θ=

( )2lpg s 0.45 1.452mτ θ= 1.263mθ θ=

With the cascaded system thus obtained, an
equivalent two-element control system consisting of 
a single loop and a pre-filter at the command input, 
as shown in Fig. 2, can be derived. They are:
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3 MULTI-LOOP CONTROLLER DESIGN

Consider a n×n system of the following:

( ) ( ) ( ) ( )Y s G s U s D s= + (15)

where ( )Y s , ( )U s  and ( )D s  designate the output, 

input, and disturbance vectors, respectively. ( )G s  is 

an open-loop transfer function matrix with some of
its elements having integrat ors. Similar to the design 
approach for SISO systems, an internal controller is
used to stabilize the integrating processes  first. As
show in Fig.  5, ( )V s  is the input to the secondary

loop, and ( )U s  is the actual control input to the 

process, and, the resulting internal loop is designated
as ( )G s . Assume that ( )mng s (i.e. the element of the 

(m,n)-th entry of ( )pG s ) has an integrator, then

( )2cG s and ( )E s in the internal loop are given as:
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( , ) ( , ) ( , )E i j i n j mδ δ= (17)
where, ( , )i jδ is a kronecker delta function.

Substituting ( )U s  with ( )V s , Eq. (15) can be 

written as:
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Fig. 5. Multi-loop control structure with inner 
feedback loops

Because of ( )2cG s , ( )G s becomes an open-loop

transfer function matrix. To control this ( )G s , the

direct method (Huang, et al., 2003) for multi-loop
PI/PID controller design can be applied. Before
deriving the controllers, first, the pairing of variables 
has to be addressed.

3.1 Loop pairing

Relative gain analysis has become an accepted
method for establish pairs of manipulated and
controlled variables  to minimize interactions in
multivariable systems. However, this RGA
computation can’t be directly applied to the non-self-
regulation system which has integrator in the transfer 
function matrix. Besides, the allocation of integrators 
in ( )G s  will also complicate the pairing problem.

As has been mentioned, since integrator is critical to 
system stability, internal loop(s) is to be used to
stabilize the output(s) that has integrator(s)
associated with inputs. The choice of pairing for the 
secondary loops will be clear when each of the 
output has only one integrator associated with only
one manipulating input. But, it becomes more
complicated when there are more then one integrator 
associated with more than  one outputs. In the 
following, the above mentioned different pairing
problems will be illustrated using a 3× 3 systems. 
The results can be extended to the n×n systems. 

The pairing problem is  formulated in the following 
way:
(1) Assume a candidate set of pairs  for constructing
the secondary loops. When the secondary loops are
closed, the resulting open-loop stable process (i.e. 

( )G s ) and its steady -state gain , K , will be computed, 

that is:

( )
0

lim
s

G s
→

=K
(20)

Then, RGA, Λ , is computed from the elements of 
the resulting K according to:

( )1
T−Λ = ⊗K K

(21)

(2) Try the alternative pairing for secondary loops 
and compute the corresponding RGA, Λ .
(3) Among the candidates of RGAs, find the one 
which has most comfortable relative gains for
pairings. T he pairing procedures will thus be
discussed for the three occasions as follows.

[Case 1] One integrator to one output
In this case, there is only one possible pair (say,

ay -



bu ) to stabilize the integrator with internal loop. The

resulting K , after closing the internal loop, will have 
the same ( 1) ( 1)n n− × − sub-matrix as that of K , that is:
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(22)

In other words, the remaining ( 1) ( 1)n n− × − subsystem

can be paired according to the RGA calculated from 
the corresponding sub-matrix of K .

[Case 2]More than one integrators to one output.
In this case, more integrators are associated with one 
output. No matter which integrator element is
stabilized with a given secondary internal loop, the
resulting RGA computing from the resulting K will
be the same. In other words, although the choice for 
pairing the secondary loops may differ, the
interaction measure for the remaining sub-system in
terms of the RGA will be the same. The proof is
given in the following. 

Proof. Assume that 1y is engaged with integrating 
inputs, and 

1kg  is to be stabilized with an inner loop ,

we have:
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According to Eq. (25), the steady -state gains
(designate as kK ) at (1,k) entry, (i.e.

1kk ) becomes

one. The other gains in the same row (i.e. 
1jk , j k≠ )

becomes
1 , 1,/( )j c k kk k k  when 

1 ( )jg s has integrator, or 

zero when 1 ( )jg s has no integrator. By Eq. (26), the 

steady-state gains can be given for i=2~n as

1 1/ij ij j ik kk k k k k= −  when 
1, ( )jg s  has an integrator,

and
ij ijk k= when

1, ( )jg s  does not have integrator.

Similar ly, if the
1hg is considered to be stabilized with 

an internal loop, its steady-state gain array hK  can 
be obtained in the same way. It can be shown that kK
and hK has the following relation, that is:

k hK BK A= (27)
where B and A are diagonal matrices:
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Then, it is obvious to have:
( , )h kP h kΛ = Λ (30)

Where, ( , )P h k is a permutation matrix which makes 

hth and kth columns exchanged. As a result, to
stabilize the integrating process, there will be no 
preference to the selection of pairing for secondary

loops, as far as the interaction measures for the 
remaining subsystem is concerned, as the interaction 
measures for the remaining subsystem will be the 
same. The guideline for pairing the secondary  loops
should then be focused on the stability robustness of 
each individual secondary loop (e.g. choose larger 

,i jk or faster dynamics).

[Case 3] More integrators to more outputs.
In this case, it can also be shown that stabilizing the 
integrator element with different secondary loop
pairings has the same interaction measures for their
sub-systems. Thus, there will be also no preference 
for one set of candidate pairs over the others, unless
the concern of stability in each individual loop  is 
considered. The guideline to pair the secondary loop 
for integrat or, in the first step of design, is thus to
focus on  each secondary loop to have better stability 
robustness. In the second step, K and the relat ed
RGA of ( )G s  is computed, and, input/output pairs 

for multi-loop control are determined accordingly.

3.2 Multi-loop controller design

By incorporating the secondary loops, the original 
MIMO process can be considered as an open-loop
stable process. Regarding this resulted open-loop
stable process (i.e. ( )G s ), multi-loop PI/PID

controllers can be designed by employing the direct 
method proposed by Huang et al. (2003). T he
transfer function that describes the effective
transmission in each equivalent loop is considered as 
the effective open-loop process (designate as EOP) 
of that loop. Let ( )G s  and ( )1cG s  be partitioned 

into 2×2 form, that is:
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As mentioned, the first equivalent loop (i.e.
1g ) can 

be derived as following:

( ){ }11
1 1,1 1,2 2,2 2,2 ,1 2,1cg G G I I G G G

−−= − − +g (32)

All other EOPs can thus be derived in the same way.
Huang et al. (2003) provides a approximation
formulation to include the effect of ( )1cG s , without

knowing exactly what they are, in the formulation of 
EOPs. As a result, the design of controllers for the 
EOPs can be carried out independently. Notice that, 
for each EOP that has integrator in its internal loop,
only PI-type controller will be assigned. Other than 
these loops, PID -type controller will be used to 
improve each single loop control for the EOPs. The
EOPs in Eq. (32), in general, are represented by 
either the FOPDT or the SOPDT models of the 
following:
l FOPDT dynamics:
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l SOPDT dynamics (overdamped):
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l SOPDT dynamics (underdamped):
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Methods to determine FOPDT models can be derived 
from ultimate gains and ultimate frequency, or, by
formulating the following optimization problem.
That is:

{ } ( ) ( )( ){
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0P

2
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P min Re ; P ;P

Im ;P ;P

fw
Arg w w

w w dw

= − +
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∫ g g

g g
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where P  consists of parameters in *g  and fw  is 

the frequency bandwidth concerned. Upon finishing 
the modeling for EOPs, PI and PID controllers can be 
selected to compensate for the loop transfer functions 
to become the desired loop transfer functions. Notice 
each loop gain can be assigned to weight the
importance of each loop. For equal weight
consideration, the value for each loop  is defaulted to 
be taken as 0.6 for 

1( )lpg s  and 0.45 for 
2( )lpg s . Notice 

that there is no need to go through an iteration 
process to determine the final multi-loop controller, 
the one obtained for the EOP of Eq.(32) will be the 
one to use.

4. SIMULATION RESULTS

4.1 Example for SISO system

Example 1 Consider a process with the transfer 
function 60.0506 /se s− , which was also given in the
paper of Kaya (2003). The PI -PD controller
parameters in that paper are 1.6184cK = , 17.599iT = ,

fK =1.0956 and 
dT =2.4528 . Then for the proposed

methods, the required parameters for PI-PD and PID-
filter are found: kα

=2.5033,
Dτ =2.4, kβ

=0.1737,

Rτ =1.8834 , '
ck =3.4922, '

Rτ =15.1262, '
Dτ =2.0192

and
fτ =11.2810. Simulation results are given in Fig. 

6. A unit step set point is introduced at time t=0, and 
a load disturbance d=-1 is introduced at time t=100.
The proposed method gives superior results than the 
other, especially for the disturbance rejection.
Although the approximate filter is slightly degraded
in system performance, it is pretty easy for
implementation in the factory.
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Fig. 6. Set point and disturbance responses for
example 1

4.2 Multi-loop controllers design

Example 2. The proposed method is then applied to 
a system  that ha s three loops. Considered a  3×3
system:

( )
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where ( )1,1g s  isn’t a pure integrating process which

has an extra first order lag. Since only 11 ( )g s  has an 

integrator, the internal loop pairing should direct to 
the (1,1) -pair. The inner controller then is design ed
according to 2 ( )lpg s . The pairing for the remaining

subsystem is then conducted by the computed RGA 
of K . After p airing the loops, t he resulting dynamic 
models of the EOPs are given in Table 2. Based on 
these models, the PI and PID controllers are
synthesized and are given in the same table.
Simulation results for step changes are given in Fig. 
7. The results show the performance of these loops is
satisfactory.

5. CONCLUSION

In this paper, a two-element control system is applied 
to design the control for integrating process in either 
SISO, or MIMO system. For a single-loop system , a 
two-element control having a PID controller in the 
feedback loop and a pre-filter at the commend input 
is resulted. In a MIMO system, the same approach is 
applied. As a first step, constructing secondary  loops 
to stabilize the integrators is required. Pairing issue 
for such secondary loops is addressed. It is found that 
stabilizing an integrator via pairing different input to
the same output will result in the same interaction 
measures for the remaining loops, if the RGA
analysis is used. It is also found that loop pairing in
the proposed method will have the same result as that
of Woolverton (1980). In design, selection of pairing 
for secondary loops is thus guided by focusing on 
obtaining the best stability robustness to individual
secondary loops, then, the modified steady-state gain 
matrix and its RGA are computed for the select ion of 
pairs for the remaining loops. A direct method by 
making use of  effective open-loop process (EOP) to 
design the multi-loop controllers is then used. As a 
result, controllers in each loop can be designed
independently. The effectiveness of this proposed 
method in designing single-loop and multi-loop
controllers is illustrated withtwo simulated examples ,
one for a SISO system and one for a 3 3× system.
The simulation results from the proposed design give
satisfactory control performance for in both cases.

ACKNOWLEDGEMENT

This research is supported by the Ministry of
Economic Affair, Taiwan, under grant No. 92-EC-17-
A-09-S1-019.



Table 2. Model of EOP and controller tuning for example 2

Loop 1 Loop 2 Loop 3
Ultimate frequency 2.2179 1.9263 0.2698
Ultimate gain 2.3494 10.2263 26.8778
Model of EOP 0.9065

0.9585 1

se

s

−

+

0.86632.6665
5.2834 1

se
s

−

+

5.9612.6603
99.5531 1

se
s

−−
+

Controller 1
11.03 1 2.85

69.64
s

s
 − + + 
 

( )1
1.37 1 1 0.35

5.28
s

s
 + + 
 

( )1
0.79 1 1 2.38

99.55
s

s
 − + + 
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Pre-filter 1
1.86 1s +
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Fig. 7. Responses of multi-loop control for example 2.
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