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Abstract: We describe the development of an automated modelling system that uses the 
genetic programming paradigm. The Genetic Modelling System (GeMS) is capable of 
generating appropriate algebraic (linear and nonlinear) and ODE systems from 
experimental data.  The utility of GeMS is illustrated through several examples involving 
laboratory systems and simulated kinetic data. Copyright  2004 IFAC
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1. INTRODUCTION 

The present day chemical industry is characterized as 
“data rich and information poor” – there is a need for 
tools and methods that are capable of extracting 
useful process information from the terabytes of data 
that are archived in plant databases. A plethora of 
tools such as multivariate statistics, neural networks, 
Bayesian networks, self-organizing maps, CART 
(Classification and Regression Trees) etc. are 
available at present to convert data into useful 
process knowledge (models, rules etc.). A relatively 
recent addition to this family is the genetic 
programming (GP) that has its origins in genetic 
algorithms (GA) (Holland, 1975). GP is a 
biologically inspired, domain-independent method 
that genetically breeds populations (of computer 
programs, mathematical formulae etc.) to solve 
problems. The first runs of genetic programming 
were made in 1987 but the first detailed description 
was available in a textbook published several years 
later (Koza, 1992).  When accompanied by robust 
parameter estimation methods, GP has the ability to 
determine the “optimal” structure of the model that 
“best” describes the given data set. By its very 
nature, GP also provides a family of comparable 
solutions from which the informed user can select a 
model that is commensurate with the 
physics/chemistry of the system as well as the 
intended end use. The GP method is computationally 
intensive but can come quite handy in situations 
where little or nothing is known about the structure 
of the process model. 

GP has been applied in many areas ranging from 
engineering and finance to medicine. We primarily 
focus on applications in the field of process systems 
engineering here. McKay et al. (1997) apply GP to 

the steady state modelling of chemical processes and 
consider a tutorial example followed by applications 
to two typical processes - a vacuum distillation 
column and a chemical reactor system. Willis et al., 
(1997) extend the GP methodology to the 
development of dynamic input-output models and 
demonstrate its workability by the development of 
inferential estimation models for a vacuum 
distillation column and a twin screw cooking 
extruder. Marenbach (1998) use GP for the 
construction and refinement of models for a 
simulated bioprocess. This work employs block 
diagrams (such as those available in SIMULINK®

under MATLAB®) for representing the models – this 
is in contrast to other works that are equation 
oriented. Greeff and Aldrich (1998) illustrate GP-
based empirical modeling by means of three 
examples, two of which are based on data pertaining 
to leaching experiments. Lakshminarayanan et al. 
(2000) use a composite GP-PCA (genetic 
programming combined with a multivariate statistical 
technique called principal components analysis 
(PCA)) approach to generate nonlinear models for 
industrial product design applications. Gao and 
Loney (2001) combine GP with neural net to evolve 
a polymorphic neural network and apply it to 
predicting pH in a simulated CSTR. Grosman and 
Lewin (2002) employ GP for nonlinear model 
predictive control (NMPC). In their work, the 
nonlinear model predictive control uses predictions 
provided by the GP generated model and this is 
shown to improve the control performance on two 
multivariable simulated processes: a mixing tank and 
a Karr liquid-liquid extraction column. 

In this paper, we wish to describe the features of a 
Genetic Modelling System (GeMS) that has been 
developed in our laboratory. GeMS uses the genetic 



programming paradigm to identify models ranging 
form algebraic to state space models from 
experimental data. The paper is organized as follows. 
In section 2, we provide a quick overview of GP 
based modelling and detail some of the innovative 
concepts implemented in GeMS. Section 3 provides 
some interesting simulation and experimental case 
studies of modelling using GeMS. One of the key 
features of GeMS is the automated assembly of a 
nonlinear ordinary differential equation (ODE) 
system to represent the behaviour of process systems 
using experimentally observed data. This will be 
demonstrated in Section 4. Conclusions and planned 
future work will be spelt out in the final section. 

2. GENETIC PROGRAMMING 

Since a lot of information is available in the literature 
about genetic operators etc. we will only point out 
the unique features of GeMS here.  

2.1 Data structure for gene and chromosome 

The most important thing is how the population data is 
stored. We need to store all the chromosomes from 
initial to final population; it is easy to see that the 
storage requirements can be very high. Whenever a 
new chromosome is created, it is compared with all 
the members that were ever “created” to ensure that 
unnecessary calculations are avoided. It is easy to 
understand that this comparison must be performed 
very fast.  

GeMS uses a novel approach to store the genes and 
chromosomes – this provides fast access and makes it 
easily extensible.  GeMS employs indexing to the 
gene library. It is similar to using pointers in C 
language. In contrast to using string to represent 
chromosomes, the use of indexing requires less 
memory to store and facilitates faster comparison and 
manipulation. Since MATLAB is optimized for matrix 
manipulations, the entire population is stored in a 
single three-dimensional matrix. The last (third) 
dimension denotes the chromosome number. Let X 
denote the whole population. The second chromosome 
or chromosome number 2 is referred as X(:,:,2) - this 
is a two dimensional matrix. The first row contains 
the index of the gene library and the remaining rows 
represent properties or states of gene of respective 
column. For a typical run having population size of 
200, 20 generations and with 30 as the maximum 
chromosome size, the storage requirement is roughly 5 
MB. The size is reduced by a factor of 3 to 5 when 
saved to disk using sparse matrix format. 

The main reason behind this flexibility is the 
implementation of the representation scheme using a 
pointer or index to the gene library. Addition of a new 
gene to the gene library can be accomplished without 
hard coding of the program simply by pointing the 
gene functions file (m-file) to gene’s evaluation 
function handle. Single information (a pointer) is not 
enough to fully represent a gene in most cases. 
Additional information such as number of parameters, 

number of input arguments, state properties (for ODE
systems) and so on must also be stored along with the 
gene. To address these issues, a novel representation is 
used. A two-dimensional matrix represents the 
chromosome. Each column represents a gene. Usual 
genetic operators manipulate along the column of this 
matrix. Some special genetic operators such as the 
adaptation operator manipulate the third row or state 
of the gene.  

The advantages of using a matrix to represent a 
chromosome are: (i) Flexibility, generality and ease 
of implementing novel genes (ii) it requires less 
memory to store the information. This is particularly 
important since GeMS stores all chromosomes that 
are generated. (iii) it permits fast searching and 
manipulation of chromosome and (iv) it allows easy 
implementation of genetic operators. The unique 
encoding of chromosomes allows us to handle 
different domains without altering the main GP 
algorithm. 

GeMS also exploits any available a priori knowledge 
in order to limit the search space or to transform the 
model assembled by GP into more effective models. 
GeMS assembles models randomly, so sometimes it 
may assemble absurd model structures such as 
exp(exp(exp(u1))). In such cases, we may limit how 
many operands one function may take. GeMS also 
determines the optimal parameter position in the 

model. For example, the model 2211 * ukuk  is 

reduced to 211 uuk . In order to accommodate varied a

priori knowledge, a new concept called evolution 
policy is implemented. The user can define the 
evolution policy using keywords for action to be taken 
(inclusion, exclusion, parameter reduction, etc) for 
conditions such as repetition of a specific gene, 
existence of a specific gene, etc. 

2.2 Parameter Estimation 

GP is used only for structure generation according to 
the well-known and some newly developed 
(superposition crossover and adaptation) genetic 
principles. Proven global and local optimization 
methods combined with a user-defined rule-based 
parameter pruning technique are used for parameter 
estimation in GeMS. 

A run of GP spends most of the time in parameter 
estimation than in the genetic operations itself. The 
model structure may be nonlinear and has several local 
minima. Choosing right optimizer is critical. Torni et 
al. (1999) mention that choosing the right optimizer is 
based on features of problem, which is postulated 
depending on 1) region of attraction of global 
minimum 2) cost of function evaluations 3) embedded 
or isolated global minimum and 4) number of local 
minima. GeMS uses stochastic “global” optimization 
methods such as simulated annealing, genetic 
algorithms and differential evolution in conjunction 
with local optimization techniques like the Gauss 



Newton method to determine the optimum values of 
the parameters.  

2.3 Fitness measure 

Fitness is a numeric value assigned to each member of 
the population to provide a measure of the 
appropriateness of the individual as a solution to the 
problem in question. The definition of fitness measure 
has a direct and significant bearing on the resulting 
solution. Fitness measure is defined such that the most 
suited model will have the highest (or lowest) score 
whereas the poorest model will have the lowest (or 
highest) score and all other models lie in the 
continuum between these extremes.  

The goal of having a fitness evaluation is to give 
continuous feedback to the evolutionary algorithm 
regarding which individuals should have a higher 
probability of being allowed to multiply and reproduce 
and which individuals should have a higher 
probability of being removed form the population. The 
fitness function is calculated on the validation data set 
or the combination of both training and validation data 
sets.  

GeMS uses well-known model selection criteria 
employed for system identification such as Minimum 
Description Length (MDL) or Akaike's Information 
Criterion (AIC). Generally, such criteria include two 
terms: (a) a term that accounts for mismatch between 
the experimental data and model predictions and (b) 
penalty for number of parameters. The first term 
generally decreases with increasing model complexity 
and the second term increases with increasing model 
complexity. 

GeMS also incorporates a modified fitness function 
that basically adds a heuristically defined complexity 
index to the MDL or AIC criterion. This strategy is 
used to generate and nurture less complex models 
and hence the resulting models turn out to be much 
simpler.   

GeMS uses MATLAB ODE solvers such as RK45 
and ODE15S to determine the model responses for 
each model generated by the GP and parameter 
estimation sub-modules. 

3. CASE STUDIES 

Several researchers have employed GP for the steady 
state and dynamic modeling of chemical process 
(e.g. McKay et al., 1997). The dynamic modeling is 
achieved by including the lagged values of the inputs 
and/or the output variables thereby converting the 
problem into an algebraic modeling exercise. 
Interestingly, even some simple algebraic systems 
cannot be identified if suitable transformations are 
not enforced on the dependent variables (y). Usually, 
the programs attempt to construct models of the form 
y = f(x,k) +  where f(x,k) is a functional form (to be 

identified) that involves the input variables x and the 
parameter vector k.  denotes the noise component. 
However, this form is not always adequate. We have 
therefore made provisions in GeMS to also search for 
implicit models of the form g(y,x) = f(x,k) + where 
g(y,x) is a functional form that also needs to be 
identified along with f(x,k).  For such cases, a 
chromosome consists of two trees: the first tree for 
function f and last tree for function g. Standard 
genetic operations are then used to identify the 
model. 

Example 1: Nonlinear Algebraic Equation 

The data for this example was generated from the 

equation 122 yx . The output ‘y’ was corrupted 

with IID noise. The [x, y] data was presented to both 
the explicit and implicit algebraic equation 
identification modules. All runs of the explicit 
algebraic identification resulted in the model y = -
0.02, which is nothing but the mean value of y in the 
data set. Eight of the ten runs with the implicit model 
identification procedure identified the correct model 
as (y*y)=(1+(-0.992*(x*x))). The data, true model 
and the identified model are shown in Figure 1. 
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Fig 1. Data vs. model prediction for example 1 

Example 2: Identification of a dynamic model for a 
laboratory process  

An experimental process system (see schematic in 
Figure 2) was designed and installed recently in our 
research laboratory.  This equipment facilitates 
experimental studies related to the dynamics and 
control of linear as well as nonlinear multivariable 
processes. The system is fitted with industrial grade 
sensors and valves; the data acquisition and control 
operations are performed using 
MATLAB/SIMULINK running on a personal 
computer. Industrial standard OPC communication is 
used. Besides such “remote control”, the process can 
also be controlled using local devices.  The sensors 
(thermocouples) are located such that the process 
dynamics and control studies can be conducted over 
a wide range of time delays. 

The focus of our current application is the exit 
temperature of water in Tank 1. The inlet water that 



comes in at about 27oC is heated using an electric 
heater that can supply up to 9 kW power.  The level 
of water in Tank 1 is kept constant by manipulating 
the inlet water flow into Tank 1. The water exiting 
from tank 1 flows to Tank 2 through a long-winded 
tube. The temperature of water in Tank 2 is the 
controlled variable (TT5; y); the input variables are 
the heating power applied to Tank 1 (HT1; u1) and 
the temperature of the water entering Tank 1 (TT8; 
u2). These measurements are available at 40 seconds 
interval. The objective, here, is to build a model that 
makes a one step ahead prediction of TT5 given past 
values of all the variables.  Two sets of data are 
collected – one for model construction and the other 
for pure validation.  

Ten runs were conducted. The best model obtained 
from GeMS is given below:  
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This model has a RMSE of 0.056 in the modelling 
data set and a RMSE of 0.066 during its “pure” 
validation on the test data set. The model validation 
is shown in Figure 3. The low RMSE value for the 
prediction set as well as the results shown in Figure 3 
points to the fact that the process characteristic is 
captured well by the model reported above. Note that 
the variable u2 (temperature of the water entering 
Tank 1) does not feature in the model. This is due to 
the lack of excitation in u2 and is not due to the 

physical characteristics of the system. The GP 
procedure has demonstrated that it is able to 
distinguish between the important and unimportant 
variables. 
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Fig 3. Model validation for Example 2 

Example 3: Identification of a dynamic model for an 
experimental heat exchanger 

For this case study, we consider the modelling of data 
obtained from an experimental heat exchanger system. 
The data set was provided by Dr. Eskinat and is also 
considered in the work by Eskinat et al. (1991) in the 
context of identification of a block oriented nonlinear 
model (hammerstein model: the model is characterized 
by a nonlinear static element followed by a linear 
dynamic element). The details of the experimental 
system can be found in the above reference. The 
nonlinearity in the system is caused by the presence of 
two distinct operating regions corresponding to the 
high and low process water flow rates. A dataset 
containing 334 input-output samples was available. 
Sixty-five percent of this data set was used to obtain 
the model using DACS-GP. The remaining data was 
used for model validation. 

The best model obtained from GeMS is: 

4k
2

1k1k1kk uu55.7u17.6y84.0y

The validation of the model on the test portion of the 
data is shown in Figure 4. The model provides an 
excellent approximation to the true system behavior. It  
is interesting to note that the identified model is very 
close to the hammerstein model (except for the uk-4

200 220 240 260 280 300 320 340
-6

-4

-2

0

2

4

6

8

10

12
Measured values
GP model prediction

Fig 2. Experimental equipment setup (Example 2) 

Fig 4. Model validation for Example 3 



term) structure. In fact, the above model provided a 
slightly better validation RMSE as compared to that 
obtained by methods (Eskinat et al. 1991; 
Lakshminarayanan et al. 1995) that assumed the 
hammerstein model structure and estimated its 
parameters from the given data.  

4. IDENTIFICATION OF STATE SPACE 
MODELS 

The genetic programming technique has been applied 
to a wide range of domain including finance, 
medicine and engineering. However, most of the 
research articles (at least in the engineering 
literature) focus on the identification of algebraic 
models – even dynamic models are converted to 
algebraic models through the incorporation of lagged 
variables (e.g. Rodriguez and Fleming, 1998; 
Hinchliffe and Willis, 2003). To the best of our 
knowledge, we have seen only one published work 
on the identification of an ordinary differential 
equation (ODE) system using the GP paradigm (Cao 
et al. 1999). Their models are shown to have good 
prediction capability. However, the ODE systems 
they generate are often found to be non-autonomous.  
The identification of ODE systems pose some 
interesting issues: firstly, the GP generated models 
might turn out to be very stiff and integrating them 
could pose run time problems (stalling). The choice 
of a suitable integrator becomes crucial; secondly, 
the computational cost can be exorbitant during the 
parameter estimation and fitness function evaluation 
steps.  The parameter estimation for systems of 
known structure is itself a challenging task (Esposito 
and Floudas, 2000). In our case, the GP could come 
out with complex structures involving many 
parameters thereby making the parameter estimation 
even more difficult.

GeMS uses a multi-tree scheme to represent several 
simultaneous ODE’s. It used one tree for each state 
equation. Apart from this modification in 
representation, no other changes in genetic 
operations are required.  In this module, crossover is 
allowed across different states or trees.  

The efficiency of GeMS in modeling batch data from 
three chemical reaction systems is demonstrated 
below. These examples have been taken from the 
parameter estimation literature in which the structure 
of the ODE system is assumed to be fixed and 
known. 

Example 4: Cracking of gas oil 

This model represents the catalytic cracking of gas 
oil (A) to gasoline (Q) and other side products (S). 
Only the concentrations of A and Q were measured; 
therefore, the concentration of S does not appear in 
the model for estimation. Tjoa and Biegler (1991) 
estimated the parameters of a proposed differential 
equation system model using experimental data from 
this system. Owing to space constraints, we do not 
report the data here – the reader is referred to Table 

23 of Esposito and Floudas (2000) for the data set. 
Here, we assume no knowledge of the chemistry or 
the reaction mechanism. We only provide GeMS 
with the measurements of the two states A and Q. 
We specify that the terminal gene should include 
state variable z1, z2 and constant. The arithmetic 
operators that were included are ‘+’, ‘–‘, ‘*’and ‘/’. 

The best models from the ten independent runs 
conducted are summarized in the Table 1. 

Table 1: Best models of GP runs for example 4

Fitness RMSE Model 

-93.1 0.0083
(-14.81*(z1*z1)), 
((12.32*(z1*z1))+(-7.859*z2))   

-93.1 0.0083
(-14.81*(z1*z1)), 
((12.32*(z1*z1))+(-7.859*z2))   

-91.6 0.0083
(-14.81*(z1*(z1-(z1-z1)))),  
((-7.859*z2)+ (12.32*(z1*z1)))   

-93.1 0.0083
(-14.81*(z1*z1)), 
((12.32*(z1*z1))+(-7.859*z2))   

-93.1 0.0083
(-14.81*(z1*z1)), 
((12.32*(z1*z1))+(-7.859*z2))   

For comparison, the “true” model that was used to 
generate this data set is: 
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The parameters in the model generated by GeMS are 
different from the true parameters owing to the noise 
added to the measurements. 

Example 5: Lotka-Volterra system 

This problem has been studied by Luus (1998). This 
model is a representation of the predator-prey model 
used in ecology. The system is described by two 
differential equations:      

)1(

)1(
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1
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dz
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with the initial conditions z0 = [1.2 1.1]. The 
experimental data is available for t = [1,10]. 

In this model, z1 represents the population of the prey 
and z2 the population of the predator. The solutions 
to these equations point to the periodic nature of the 
predator and prey populations. The data used in the 
study were generated using values for the parameters 
as k1 = 3 and k2 = 1 with a small amount of normally 
distributed random error with  = 0.02 and zero 
mean added to the observations. The data set is 
available in Table 26 of Esposito and Floudas (2000). 
The best models obtained from six runs are shown in 
Table 2. The fourth model has the best fitness value. 
It is clear that the best identified model matches with 
the true model very closely. With this model, a plot 
of the measured data vs. model prediction appears as 
shown in Figure 5. 



Table 2: Best models of GP runs for example 5

Fitness RMSE Model 

-31.92   0.024 
(-11.099*(z1-(z2*z2))), 
(-10.859*(z1-z2))   

-31.76   0.025 
(4.6951*((z2*z2)-z1)), 
(4.4575*(z2-z1))   

-31.68   0.025 
(9.8078*(z1-(z1*z2))), 
(0.34589*(z1-z2))

-51.09   0.0031 
(2.9812*((z1+(-
0.0047458*z1))-(z2*z1))), 
((z2*z1)-z2)   

-33.17   0.019 
((8.1585*(z2-
(z2*z2)))+(0.26568*z1)), 
(0.3633*(z1-z2))   

-43.46   0.0075 
(-7.4976*(z1-(z2*z1))), 
(2.9281*(z1-(z1*z1)))   
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Fig 5. Model fit obtained for Example 5

5. CONCLUSIONS  

We have described and demonstrated the features of 
a GP-based modelling system called GeMS. The 
capabilities include the identification of nonlinear 
models for static and dynamical systems. GeMS is 
able to identify explicit and implicit form of 
equations. A unique feature of GeMS is the 
implementation of a robust module that can identify 
nonlinear ODE’s directly from measured data. We 
have also integrated some nonparametric and 
exploratory data analysis techniques into GeMS (not 
explained here) so that its search space can be quite 
focused.  
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