
IDENTIFICATON OF ALBEBRAIC AND STATE SPACE MODELS
USING GENETIC PROGRAMMING

Kyaw Tun and S. Lakshminarayanan*

Department of Chemical and Environmental Engineering
National University of Singapore, Singapore 117576

*Corresponding Author. Telephone: +65-68748484 Email: chels@nus.edu.sg

Abstract: We describe the development of an automated modelling system that uses the
genetic programming paradigm. The Genetic Modelling System (GeMS) is capable of
generating appropriate algebraic (linear and nonlinear) and ODE systems from
experimental data. The utility of GeMS is illustrated through several examples involving
laboratory systems and simulated kinetic data. Copyright 2004 IFAC

Keywords: System identification, Nonlinear models, State space models

1. INTRODUCTION

The present day chemical industry is characterized as
“data rich and information poor” – there is a need for
tools and methods that are capable of extracting
useful process information from the terabytes of data
that are archived in plant databases. A plethora of
tools such as multivariate statistics, neural networks,
Bayesian networks, self-organizing maps, CART
(Classification and Regression Trees) etc. are
available at present to convert data into useful
process knowledge (models, rules etc.). A relatively
recent addition to this family is the genetic
programming (GP) that has its origins in genetic
algorithms (GA) (Holland, 1975). GP is a
biologically inspired, domain-independent method
that genetically breeds populations (of computer
programs, mathematical formulae etc.) to solve
problems. The first runs of genetic programming
were made in 1987 but the first detailed description
was available in a textbook published several years
later (Koza, 1992). When accompanied by robust
parameter estimation methods, GP has the ability to
determine the “optimal” structure of the model that
“best” describes the given data set. By its very
nature, GP also provides a family of comparable
solutions from which the informed user can select a
model that is commensurate with the
physics/chemistry of the system as well as the
intended end use. The GP method is computationally
intensive but can come quite handy in situations
where little or nothing is known about the structure
of the process model.

GP has been applied in many areas ranging from
engineering and finance to medicine. We primarily
focus on applications in the field of process systems
engineering here. McKay et al. (1997) apply GP to

the steady state modelling of chemical processes and
consider a tutorial example followed by applications
to two typical processes - a vacuum distillation
column and a chemical reactor system. Willis et al.,
(1997) extend the GP methodology to the
development of dynamic input-output models and
demonstrate its workability by the development of
inferential estimation models for a vacuum
distillation column and a twin screw cooking
extruder. Marenbach (1998) use GP for the
construction and refinement of models for a
simulated bioprocess. This work employs block
diagrams (such as those available in SIMULINK®

under MATLAB®) for representing the models – this
is in contrast to other works that are equation
oriented. Greeff and Aldrich (1998) illustrate GP-
based empirical modeling by means of three
examples, two of which are based on data pertaining
to leaching experiments. Lakshminarayanan et al.
(2000) use a composite GP-PCA (genetic
programming combined with a multivariate statistical
technique called principal components analysis
(PCA)) approach to generate nonlinear models for
industrial product design applications. Gao and
Loney (2001) combine GP with neural net to evolve
a polymorphic neural network and apply it to
predicting pH in a simulated CSTR. Grosman and
Lewin (2002) employ GP for nonlinear model
predictive control (NMPC). In their work, the
nonlinear model predictive control uses predictions
provided by the GP generated model and this is
shown to improve the control performance on two
multivariable simulated processes: a mixing tank and
a Karr liquid-liquid extraction column.

In this paper, we wish to describe the features of a
Genetic Modelling System (GeMS) that has been
developed in our laboratory. GeMS uses the genetic

programming paradigm to identify models ranging
form algebraic to state space models from
experimental data. The paper is organized as follows.
In section 2, we provide a quick overview of GP
based modelling and detail some of the innovative
concepts implemented in GeMS. Section 3 provides
some interesting simulation and experimental case
studies of modelling using GeMS. One of the key
features of GeMS is the automated assembly of a
nonlinear ordinary differential equation (ODE)
system to represent the behaviour of process systems
using experimentally observed data. This will be
demonstrated in Section 4. Conclusions and planned
future work will be spelt out in the final section.

2. GENETIC PROGRAMMING

Since a lot of information is available in the literature
about genetic operators etc. we will only point out
the unique features of GeMS here.

2.1 Data structure for gene and chromosome

The most important thing is how the population data is
stored. We need to store all the chromosomes from
initial to final population; it is easy to see that the
storage requirements can be very high. Whenever a
new chromosome is created, it is compared with all
the members that were ever “created” to ensure that
unnecessary calculations are avoided. It is easy to
understand that this comparison must be performed
very fast.

GeMS uses a novel approach to store the genes and
chromosomes – this provides fast access and makes it
easily extensible. GeMS employs indexing to the
gene library. It is similar to using pointers in C
language. In contrast to using string to represent
chromosomes, the use of indexing requires less
memory to store and facilitates faster comparison and
manipulation. Since MATLAB is optimized for matrix
manipulations, the entire population is stored in a
single three-dimensional matrix. The last (third)
dimension denotes the chromosome number. Let X
denote the whole population. The second chromosome
or chromosome number 2 is referred as X(:,:,2) - this
is a two dimensional matrix. The first row contains
the index of the gene library and the remaining rows
represent properties or states of gene of respective
column. For a typical run having population size of
200, 20 generations and with 30 as the maximum
chromosome size, the storage requirement is roughly 5
MB. The size is reduced by a factor of 3 to 5 when
saved to disk using sparse matrix format.

The main reason behind this flexibility is the
implementation of the representation scheme using a
pointer or index to the gene library. Addition of a new
gene to the gene library can be accomplished without
hard coding of the program simply by pointing the
gene functions file (m-file) to gene’s evaluation
function handle. Single information (a pointer) is not
enough to fully represent a gene in most cases.
Additional information such as number of parameters,

number of input arguments, state properties (for ODE
systems) and so on must also be stored along with the
gene. To address these issues, a novel representation is
used. A two-dimensional matrix represents the
chromosome. Each column represents a gene. Usual
genetic operators manipulate along the column of this
matrix. Some special genetic operators such as the
adaptation operator manipulate the third row or state
of the gene.

The advantages of using a matrix to represent a
chromosome are: (i) Flexibility, generality and ease
of implementing novel genes (ii) it requires less
memory to store the information. This is particularly
important since GeMS stores all chromosomes that
are generated. (iii) it permits fast searching and
manipulation of chromosome and (iv) it allows easy
implementation of genetic operators. The unique
encoding of chromosomes allows us to handle
different domains without altering the main GP
algorithm.

GeMS also exploits any available a priori knowledge
in order to limit the search space or to transform the
model assembled by GP into more effective models.
GeMS assembles models randomly, so sometimes it
may assemble absurd model structures such as
exp(exp(exp(u1))). In such cases, we may limit how
many operands one function may take. GeMS also
determines the optimal parameter position in the

model. For example, the model 2211 * ukuk is

reduced to 211 uuk . In order to accommodate varied a

priori knowledge, a new concept called evolution
policy is implemented. The user can define the
evolution policy using keywords for action to be taken
(inclusion, exclusion, parameter reduction, etc) for
conditions such as repetition of a specific gene,
existence of a specific gene, etc.

2.2 Parameter Estimation

GP is used only for structure generation according to
the well-known and some newly developed
(superposition crossover and adaptation) genetic
principles. Proven global and local optimization
methods combined with a user-defined rule-based
parameter pruning technique are used for parameter
estimation in GeMS.

A run of GP spends most of the time in parameter
estimation than in the genetic operations itself. The
model structure may be nonlinear and has several local
minima. Choosing right optimizer is critical. Torni et
al. (1999) mention that choosing the right optimizer is
based on features of problem, which is postulated
depending on 1) region of attraction of global
minimum 2) cost of function evaluations 3) embedded
or isolated global minimum and 4) number of local
minima. GeMS uses stochastic “global” optimization
methods such as simulated annealing, genetic
algorithms and differential evolution in conjunction
with local optimization techniques like the Gauss

Newton method to determine the optimum values of
the parameters.

2.3 Fitness measure

Fitness is a numeric value assigned to each member of
the population to provide a measure of the
appropriateness of the individual as a solution to the
problem in question. The definition of fitness measure
has a direct and significant bearing on the resulting
solution. Fitness measure is defined such that the most
suited model will have the highest (or lowest) score
whereas the poorest model will have the lowest (or
highest) score and all other models lie in the
continuum between these extremes.

The goal of having a fitness evaluation is to give
continuous feedback to the evolutionary algorithm
regarding which individuals should have a higher
probability of being allowed to multiply and reproduce
and which individuals should have a higher
probability of being removed form the population. The
fitness function is calculated on the validation data set
or the combination of both training and validation data
sets.

GeMS uses well-known model selection criteria
employed for system identification such as Minimum
Description Length (MDL) or Akaike's Information
Criterion (AIC). Generally, such criteria include two
terms: (a) a term that accounts for mismatch between
the experimental data and model predictions and (b)
penalty for number of parameters. The first term
generally decreases with increasing model complexity
and the second term increases with increasing model
complexity.

GeMS also incorporates a modified fitness function
that basically adds a heuristically defined complexity
index to the MDL or AIC criterion. This strategy is
used to generate and nurture less complex models
and hence the resulting models turn out to be much
simpler.

GeMS uses MATLAB ODE solvers such as RK45
and ODE15S to determine the model responses for
each model generated by the GP and parameter
estimation sub-modules.

3. CASE STUDIES

Several researchers have employed GP for the steady
state and dynamic modeling of chemical process
(e.g. McKay et al., 1997). The dynamic modeling is
achieved by including the lagged values of the inputs
and/or the output variables thereby converting the
problem into an algebraic modeling exercise.
Interestingly, even some simple algebraic systems
cannot be identified if suitable transformations are
not enforced on the dependent variables (y). Usually,
the programs attempt to construct models of the form
y = f(x,k) + where f(x,k) is a functional form (to be

identified) that involves the input variables x and the
parameter vector k. denotes the noise component.
However, this form is not always adequate. We have
therefore made provisions in GeMS to also search for
implicit models of the form g(y,x) = f(x,k) + where
g(y,x) is a functional form that also needs to be
identified along with f(x,k). For such cases, a
chromosome consists of two trees: the first tree for
function f and last tree for function g. Standard
genetic operations are then used to identify the
model.

Example 1: Nonlinear Algebraic Equation

The data for this example was generated from the

equation 122 yx . The output ‘y’ was corrupted

with IID noise. The [x, y] data was presented to both
the explicit and implicit algebraic equation
identification modules. All runs of the explicit
algebraic identification resulted in the model y = -
0.02, which is nothing but the mean value of y in the
data set. Eight of the ten runs with the implicit model
identification procedure identified the correct model
as (y*y)=(1+(-0.992*(x*x))). The data, true model
and the identified model are shown in Figure 1.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

y

Measured values
Original system
GP model prediction

Fig 1. Data vs. model prediction for example 1

Example 2: Identification of a dynamic model for a
laboratory process

An experimental process system (see schematic in
Figure 2) was designed and installed recently in our
research laboratory. This equipment facilitates
experimental studies related to the dynamics and
control of linear as well as nonlinear multivariable
processes. The system is fitted with industrial grade
sensors and valves; the data acquisition and control
operations are performed using
MATLAB/SIMULINK running on a personal
computer. Industrial standard OPC communication is
used. Besides such “remote control”, the process can
also be controlled using local devices. The sensors
(thermocouples) are located such that the process
dynamics and control studies can be conducted over
a wide range of time delays.

The focus of our current application is the exit
temperature of water in Tank 1. The inlet water that

comes in at about 27oC is heated using an electric
heater that can supply up to 9 kW power. The level
of water in Tank 1 is kept constant by manipulating
the inlet water flow into Tank 1. The water exiting
from tank 1 flows to Tank 2 through a long-winded
tube. The temperature of water in Tank 2 is the
controlled variable (TT5; y); the input variables are
the heating power applied to Tank 1 (HT1; u1) and
the temperature of the water entering Tank 1 (TT8;
u2). These measurements are available at 40 seconds
interval. The objective, here, is to build a model that
makes a one step ahead prediction of TT5 given past
values of all the variables. Two sets of data are
collected – one for model construction and the other
for pure validation.

Ten runs were conducted. The best model obtained
from GeMS is given below:

4k3k

1k
2

2k
2

1k

2k1k2k1kk

1u0042.01u0021.0

yy00075.0y027.0

yy1.0y11.2y0.71139.26y

This model has a RMSE of 0.056 in the modelling
data set and a RMSE of 0.066 during its “pure”
validation on the test data set. The model validation
is shown in Figure 3. The low RMSE value for the
prediction set as well as the results shown in Figure 3
points to the fact that the process characteristic is
captured well by the model reported above. Note that
the variable u2 (temperature of the water entering
Tank 1) does not feature in the model. This is due to
the lack of excitation in u2 and is not due to the

physical characteristics of the system. The GP
procedure has demonstrated that it is able to
distinguish between the important and unimportant
variables.

0 50 100 150 200 250 300 350 400 450 500
26

28

30

32

34

36

38

40
Fresh data validation

sample

T
T

3

Data
Model

Fig 3. Model validation for Example 2

Example 3: Identification of a dynamic model for an
experimental heat exchanger

For this case study, we consider the modelling of data
obtained from an experimental heat exchanger system.
The data set was provided by Dr. Eskinat and is also
considered in the work by Eskinat et al. (1991) in the
context of identification of a block oriented nonlinear
model (hammerstein model: the model is characterized
by a nonlinear static element followed by a linear
dynamic element). The details of the experimental
system can be found in the above reference. The
nonlinearity in the system is caused by the presence of
two distinct operating regions corresponding to the
high and low process water flow rates. A dataset
containing 334 input-output samples was available.
Sixty-five percent of this data set was used to obtain
the model using DACS-GP. The remaining data was
used for model validation.

The best model obtained from GeMS is:

4k
2

1k1k1kk uu55.7u17.6y84.0y

The validation of the model on the test portion of the
data is shown in Figure 4. The model provides an
excellent approximation to the true system behavior. It
is interesting to note that the identified model is very
close to the hammerstein model (except for the uk-4

200 220 240 260 280 300 320 340
-6

-4

-2

0

2

4

6

8

10

12
Measured values
GP model prediction

Fig 2. Experimental equipment setup (Example 2)

Fig 4. Model validation for Example 3

term) structure. In fact, the above model provided a
slightly better validation RMSE as compared to that
obtained by methods (Eskinat et al. 1991;
Lakshminarayanan et al. 1995) that assumed the
hammerstein model structure and estimated its
parameters from the given data.

4. IDENTIFICATION OF STATE SPACE
MODELS

The genetic programming technique has been applied
to a wide range of domain including finance,
medicine and engineering. However, most of the
research articles (at least in the engineering
literature) focus on the identification of algebraic
models – even dynamic models are converted to
algebraic models through the incorporation of lagged
variables (e.g. Rodriguez and Fleming, 1998;
Hinchliffe and Willis, 2003). To the best of our
knowledge, we have seen only one published work
on the identification of an ordinary differential
equation (ODE) system using the GP paradigm (Cao
et al. 1999). Their models are shown to have good
prediction capability. However, the ODE systems
they generate are often found to be non-autonomous.
The identification of ODE systems pose some
interesting issues: firstly, the GP generated models
might turn out to be very stiff and integrating them
could pose run time problems (stalling). The choice
of a suitable integrator becomes crucial; secondly,
the computational cost can be exorbitant during the
parameter estimation and fitness function evaluation
steps. The parameter estimation for systems of
known structure is itself a challenging task (Esposito
and Floudas, 2000). In our case, the GP could come
out with complex structures involving many
parameters thereby making the parameter estimation
even more difficult.

GeMS uses a multi-tree scheme to represent several
simultaneous ODE’s. It used one tree for each state
equation. Apart from this modification in
representation, no other changes in genetic
operations are required. In this module, crossover is
allowed across different states or trees.

The efficiency of GeMS in modeling batch data from
three chemical reaction systems is demonstrated
below. These examples have been taken from the
parameter estimation literature in which the structure
of the ODE system is assumed to be fixed and
known.

Example 4: Cracking of gas oil

This model represents the catalytic cracking of gas
oil (A) to gasoline (Q) and other side products (S).
Only the concentrations of A and Q were measured;
therefore, the concentration of S does not appear in
the model for estimation. Tjoa and Biegler (1991)
estimated the parameters of a proposed differential
equation system model using experimental data from
this system. Owing to space constraints, we do not
report the data here – the reader is referred to Table

23 of Esposito and Floudas (2000) for the data set.
Here, we assume no knowledge of the chemistry or
the reaction mechanism. We only provide GeMS
with the measurements of the two states A and Q.
We specify that the terminal gene should include
state variable z1, z2 and constant. The arithmetic
operators that were included are ‘+’, ‘–‘, ‘*’and ‘/’.

The best models from the ten independent runs
conducted are summarized in the Table 1.

Table 1: Best models of GP runs for example 4

Fitness RMSE Model

-93.1 0.0083
(-14.81*(z1*z1)),
((12.32*(z1*z1))+(-7.859*z2))

-93.1 0.0083
(-14.81*(z1*z1)),
((12.32*(z1*z1))+(-7.859*z2))

-91.6 0.0083
(-14.81*(z1*(z1-(z1-z1)))),
((-7.859*z2)+ (12.32*(z1*z1)))

-93.1 0.0083
(-14.81*(z1*z1)),
((12.32*(z1*z1))+(-7.859*z2))

-93.1 0.0083
(-14.81*(z1*z1)),
((12.32*(z1*z1))+(-7.859*z2))

For comparison, the “true” model that was used to
generate this data set is:

2
2
1

22
1

1 812;14 zz
dt

dz
z

dt

dz

The parameters in the model generated by GeMS are
different from the true parameters owing to the noise
added to the measurements.

Example 5: Lotka-Volterra system

This problem has been studied by Luus (1998). This
model is a representation of the predator-prey model
used in ecology. The system is described by two
differential equations:

)1(

)1(

122
2

211
1

zzk
dt

dz

zzk
dt

dz

with the initial conditions z0 = [1.2 1.1]. The
experimental data is available for t = [1,10].

In this model, z1 represents the population of the prey
and z2 the population of the predator. The solutions
to these equations point to the periodic nature of the
predator and prey populations. The data used in the
study were generated using values for the parameters
as k1 = 3 and k2 = 1 with a small amount of normally
distributed random error with = 0.02 and zero
mean added to the observations. The data set is
available in Table 26 of Esposito and Floudas (2000).
The best models obtained from six runs are shown in
Table 2. The fourth model has the best fitness value.
It is clear that the best identified model matches with
the true model very closely. With this model, a plot
of the measured data vs. model prediction appears as
shown in Figure 5.

Table 2: Best models of GP runs for example 5

Fitness RMSE Model

-31.92 0.024
(-11.099*(z1-(z2*z2))),
(-10.859*(z1-z2))

-31.76 0.025
(4.6951*((z2*z2)-z1)),
(4.4575*(z2-z1))

-31.68 0.025
(9.8078*(z1-(z1*z2))),
(0.34589*(z1-z2))

-51.09 0.0031
(2.9812*((z1+(-
0.0047458*z1))-(z2*z1))),
((z2*z1)-z2)

-33.17 0.019
((8.1585*(z2-
(z2*z2)))+(0.26568*z1)),
(0.3633*(z1-z2))

-43.46 0.0075
(-7.4976*(z1-(z2*z1))),
(2.9281*(z1-(z1*z1)))

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
(2.9812*((z1+(-0.0047458*z1))-(z2*z1))), ((z2*z1)-z2)

Data - z1
Data - z2
Model - z1
Model - z2

Fig 5. Model fit obtained for Example 5

5. CONCLUSIONS

We have described and demonstrated the features of
a GP-based modelling system called GeMS. The
capabilities include the identification of nonlinear
models for static and dynamical systems. GeMS is
able to identify explicit and implicit form of
equations. A unique feature of GeMS is the
implementation of a robust module that can identify
nonlinear ODE’s directly from measured data. We
have also integrated some nonparametric and
exploratory data analysis techniques into GeMS (not
explained here) so that its search space can be quite
focused.

ACKNOWLEDGEMENTS

Financial support from the Academic Research Fund
(ARF), National University of Singapore is
gratefully acknowledged.

REFERENCES

Cao, H., Yu, J., Kang, L., Chen, Y., and Chen, Y.
(1999). The kinetic evolutionary modeling of
complex systems of chemical reactions.
Computers & Chemistry, 23(2), 143-152.

Eskinat, E., Johnson, S. H. and Luyben, W. L.
(1991). Use of Hammerstein models in

identification of nonlinear system. AICh.E J.,
37(2), 255-268.

Esposito, W. R. and Floudas, C. A. (2000). Global
Optimization for the Parameter Estimation of
Differential-Algebraic Systems. Ind. Eng. Chem.
Res., 39, 1291-1310.

Gao, L. and Loney, N.W., (2001). Evolutionary
Polymorphic Neural Network in Chemical
Process Modelling, Comp. & Chem. Engg., 25,
1403-1410.

Greeff, D. J. and Aldrich, C. (1998). Empirical
Modelling of Chemical Process Systems with
Evolutionary Programming. Comp. & Chem.
Engg., 22(7-8), 995-1005.

Grosman, B. and Lewin, D.R., (2002). Automated
nonlinear model predictive control using genetic
programming. Comp. & Chem. Engg., 26, 631–
640.

Hinchliffe, M.P and Willis, M.J. (2003) Dynamic
systems modeling using genetic programming.
Comp. & Chem. Engg., 27, 1841-1854.

Holland, J. H., (1975). Adaptation in natural and
artificial systems: an introductory analysis with
applications to biology, control, and artificial
intelligence. MIT Press, Cambridge, MA.

Koza, J. R. (1992). Genetic programming: on the
programming of computers by means of natural
selection. Cambridge, Mass., MIT Press.

Lakshminarayanan, S., Shah. S. L. and Nandakumar
K. (1995). Identification of Hammerstein models
using multivariate statistical tools. Chem. Engg.
Sci., 50 (22), 3599-3613.

Lakshminarayanan, S., Fujii, H., Grosman, B.,
Dassau, E., and Lewin, D.R., (2000). New
product design via analysis of historical
databases. Comp. & Chem. Engg., 24, 671-676.

Luus, R., (1998). Parameter Estimation of Lotka-
Volterra Problem by Direct Search Optimization.
Hung. J. Ind. Chem., 26, 287.

McKay, B., Willis, M. and Barton, G., (1997).
Steady-state modeling of chemical processing
system using genetic programming. Computer
Chem. Engg,. 21 (9), 981-996.

Marenbach P. (1998). Using prior knowledge and
obtaining process insight in data based modeling
of bioprocesses. SAMS, 31. 39-59.

Rodriguez-Vazquez, K. and Fleming, P.J. (1998).
Multiple-objective genetic programming for
nonlinear system identification, Electronics
Letters, 34(9), 930-931.

Tjoa, T. B., Biegler, L. T. (1991). Simultaneous
Solution and Optimization Strategies for
Parameter Estimation of Differential-Algebraic
Equation Systems. Ind. Eng. Chem. Res., 30,
376.

Törni, A., Ali, M.M., and Viitanen, S. (1999).
Stochastic Global Optimization: Problem
Classes and Solution Techniques. Journal of
Global Optimization, 14, 437–447.

Willis, M., Hiden, H., Hinchliffe, M., McKay, B. and
Barton, G. W. (1997) Systems modeling using
genetic programming. Comp. & Chem. Engg.,
21, S1161-S1166.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

