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Abstract:  Neural network is a popular method for predicting unknown process variables 
from measured process data.  Many learning algorithms have been proposed in the 
literature to improve model prediction. In this paper, we introduce the concept of sample 
study risk in neural network (NN) to improve the prediction of hydrogen content in coal 
using Back Propagation (BP) NN.  Targeting the problem of training convergence quality 
impaired by the interfering information of some samples in BP NN, the validity of the 
concept of sample study in NN and the feasibility of analysing the chemical element in 
coal using NN are discussed. Copyright © 2004 IFAC 
 
Keywords:  neural network, BP neural network, sample study risk, hydrogen content in 
coal. 
 
 
 
 

1.  INTRODUCTION 1y Ly2y

)(
1

QO )(
2
QO )(Q

nQ
O

)0(
2O)0(

1O )0(
NO

)1(
1nO)1(

2O)1(
1O

…                   …

…

…

…

1O 2O LO

 

 
The hydrogen content in coal is of great significance 
for indicating the quality of coal.  It is especially 
important for a combustion process.  However, direct 
determination of hydrogen content is not an easy 
task.  Ultimate analysis, though can give individual 
elemental content including the hydrogen, the 
method is nevertheless rather complicated and in 
most cases it has to be conducted in an external 
laboratory.  Therefore it is difficult to apply ultimate 
analysis frequently during coal fired power 
generation.  On the contrary, proximate coal analysis 
is a simple process and is usually available 
everywhere.  This analysis gives the most basic 
information on coal properties, including contents of 
moisture, fixed carbon, ash, volatile matter and lower 
heating value.  Unfortunately, the information 
regarding elemental content is not provided.  
Nonetheless, it is speculated that the proximate 
analysis and ultimate analysis have some 
connections and these connections will be exploited 
using Artificial Neural Network (ANN) in this paper.  
Consequently, the ANN prediction model of 
hydrogen content in coal, the model training and the 
model checking by proximate analysis of coal, using 
the Back Propagation (BP) arithmetic of Neural 
Network (NN) are discussed. 

Fig.1 Structure of BP Neural Network 
 

2.  BP NEURAL NETWORK MODEL 
 

The Back Propagation Neural Network (BP NN) 
structure adopted is shown in Figure 1.  For the given 
volume of training samples: 
( ) ( ) LLL 2,1p,pLt,2pt,1ptpNx,2px,1px =→ , 
(where P is the sample number, N, L are the 
input/output vector dimensions respectively), the 
average sum of square error between the results of 
the NN operation and the output of the training 
samples is:  
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where, tpl is the expected output of the number l 
output cell in the number p sample; ypl is the results 
of NN operation of the number l output cell in the 
number p sample. 
 
The process of training study by the network 
includes the forward calculation in the inner network 
and the backward error propagation calculation.  
These calculations minimize the NN error by 
adjusting the inner connections of the NN.  For the 
case of a single hidden layer BP NN and multi-layer 
BP NN connections between the implicit layer and 
the output layer is adjusted according to the rule of 
delta [Haykin, (2001)].  The connection between the 
hidden layers or between the output layer and hidden 
layer of the multi-layer BP NN is manipulated by the 
BP arithmetic [Sun et al, (1997), Mills, et al (1996)] 
(an advanced arithmetic) suggested by Rumelhart 
and others [Haykin, (2001)]. 
 
2.1 Formula for calculating network node 
 
As shown in Figure 1, the forward calculation of the 
BP inner network is given by: 
 
(1) The output of nodes in the input layer 
 
For N dimensions, the input vector is 
 

( ) ( )( )(
( ) ( )( ) 5.0ixminixmax/

2/ixminixmaxix)0(
iO

+−

+−=  (3) 

 
Where, max (xi) and min (xi) is the maximum and 
minimum value of the ith sample among all the 
samples. 
 
(2) The input/output of nodes in hidden layers 
 
For implicit layers the input of the number q is: 
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Where,  is the connecting weight from the 

number j node of the number (q – 1) layer to the 

number i node of the number q layer;  is the 

threshold value of the number i node in the number q 

layer; O  is the output of the number j node in 

the number (q – 1) layer; n
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q-1 is the number of nodes 
in the number (q – 1) layer. 
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The output of the nodes in the number q layer is: 
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Where, f is the Sigmoid function: 
( ) ( )] qn,qn,,2,1i;1xxf L=−−=  is the 

number of nodes in the number q layer. 
 
(3) The input/output of the output layer 
 
If the output vector has L dimensions, then the input 
of the nodes in the output layer is: 
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Where, wij is the connecting intention from the 
number j node of the number q hidden layer to the 
number i node of the output layer; θi is the threshold 

value of the output layer; O  is the output of the 

number j node in the number Q layer; n

)Q(
j

Q is the 
number of nodes in the number Q layer. 
 
The output of the nodes in the output layer is: 
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2.2 The iterative computation of connection weights 
 
(1) The connection weight of the nodes between the 
output and the hidden layers is given by 
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Where, α is the study rate (step length), and O < α < 
1; η is the momentum factor, and O < η < 1;  
Dij (k – 1) is the negative gradient at the (k – 1) time 
step; i = 1,2,…, L, j = 1,2,…, nQ. 



 
(2) The connection weight between the hidden layers 

is 
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Where, q=0,1,…,Q, when q = 0, its input layer, and 

n0 = N; w  is the connecting weight from the 

number j node of the number (q - 1) hidden layer to 
the number i node of the number q layer; k is the 
iteration time. 
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To minimize the training error of the network 
(defined by equation (2)) and speed up the 
convergence of the training, the method of variable 
study rate is adopted.  When ∆En = En – En-1 < 0, we 
choose a bigger study rate, and do the converse for 
the opposite situation.  This can be expressed as 
follows: 
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Where, “a” and “b” are constants; α is a variable 
study rate.  This training method can automatically 
adjust the study rate according to the training error 
and solve the problem of poor convergence.  One 
only needs to choose the study rate once by 
experience.  The values of “a”, “b” and α can be 
acquired by computer calculation according to the 
above principle.  The optimised value of “a”, “b” and 
α that was obtained from the literature [Yao et al, 
(1996)] is applied in this paper, α = 0.87, a = 1.05, b 
= 0.68. 
 
For the general case the correct prediction model can 
be obtained using the method of variable step length.  
However, due to the complexity of coal property, 
even though the momentum item and the method of 
variable step length study are introduced, the quality 
of convergence in the training is not perfect.  This is 
because the characteristic parameters of some coal 

sample are greatly different from the other samples.  
In other words, some samples can have greater 
incoherence than others.  To describe such 
incoherence, the concept of study risk in the NN 
studies is adopted in this work. 
 

3. THE RISK IN NN SAMPLE STUDY 
 
During the course of BP network’s online study, 
suppose the present network after P group samples 
xp = [xp1, xp2, …, xpn]T, dp = [dp1, dp2, …, dpL]

T,  
(p = 1.2,.…,P; x is the input and d is the output.) 
training, the matrix of connecting weights is Wp and 
the network’s output is: yp = [ypl, yp2. …, ypL].  When 
the new sample (P + 1) is received, after one 
training, the matrix of connecting weights becomes 
Wp+1 and the corresponding connecting weights of 
the previous P groups of samples’ output is: yp+1 = 
[y(p+1)1, y(p+1)2,…, y(p+1)L], then the associated risk to 
the network due to the new study sample can be 
expressed as: 
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σ indicates the degree of consistency of the new 
sample P + 1 and the previous P groups of samples.  
Small σ shows that new sample’s mapping relations 
is approaching the fixed BP NN’s and the training is 
easier to reach convergence after receiving new 
sample with lower risk.  On the contrary, a big σ 
shows that the new sample includes different 
information from the old ones and the training will 
not easily achieve convergence.  Accordingly, the 
training is of a higher risk.  Therefore, σ is called the 
study risk parameter for this sample. 
 
Since the first P groups of samples are not based on a 
ready network, a hypothesis is necessary to confirm 
the study risk.  Taking a network model, which has 
taken certain time to train with a comparatively 
stable error, as the basic network, then the study risk 
parameter for number p(p < P) group samples’ can 
be expressed as: 
 

( )( )

( ) Pi,ip2
1pd1py

L

1l

P

1p2
1

2
pldl1py

L

1l

P

1p2
1

i

≤≠













−

==

−+
==

=

∑∑

∑∑σ

(15) 

 



The structural parameters of BP NN include layers 
and nodes.  The numbers of input nodes and output 
nodes are decided based on the complexity of the 
process.  The key problem is the number of hidden 
layers and nodes required.  Unfortunately, there is no 
theory available so far to select this number.  The 
ability of the network to approach non-linear 
function will increase with the enhancement of layers 
and nodes, but the amount of calculation increases 
rapidly.  Therefore, the structural parameters of BP 
are obtained on the basis of large number of 
experiments.  In this paper, we adopt four layers 
structure: one input layer, two hidden layers and one 
output layer.  There are four nodes in the input 
layers, eight and four nodes in the hidden layers 
respectively, and one node in the output layer.  The 
nodes of the input layers are the ratios of volatile 
matter, ratios of ash content, ratios of dry air 
moisture content and the ratios of lower heating 
values, respectively.  According to the principle of 
section 2, the coefficient of study risk is confirmed to 
be 1.1 through repeated computation. 

where y(p+1)l. (l ≠ i) is the network’s output after the 
basic network’s first training with the number i 
sample, ypl is the output of the basic network. 
 
When the training error is relatively stable during the 
training process, the network can be said to have 
acquired certain optimisation.  If further training can 
result in greater changes to other samples, it is 
certain that the connecting weights of the network 
have changed significantly relative to the basic 
network model.  The consistency can be described by 
σi as shown in equation (15). 
 
The study risk parameter of the sample indicates the 
degree of the dissimilarity of the sample with the 
other ones.  The risk comes from two sources, 
namely: one is the samples contain significant 
interrupting information; the other is that the samples 
contain some new information that is not indicated 
by the other samples.  It is necessary to control a 
large risk since it directly affects the convergence of 
BP NN.  On the condition that the samples do not 
change, a large risk indicates that the sample 
contains significant interrupting information.  In 
order to reduce the risk these interrupting 
information should be removed.  However, this 
measure is on the other hand likely to sacrifice the 
opportunity of learning new object properties.  
Therefore, both the convergence of the network and 
the learning of new object properties have to be 
taken into account.  If convergence is ensured, use of 
a large risk parameter is recommended.  Controlling 
the study risk is sometimes very effective to screen 
out the influence of some large interrupting 
information and improve the convergence of the 
network.  The following section illustrates how to 
use the concept of study risk on the prediction of 
hydrogen content in coal. 

 
(2) Prediction results of hydrogen content in coal 

based on BP NN 
 
We used the data of 904 groups of coals to gain the 
training of design and testing of the model.  
Considering the study risk of NN, we excluded 61 
groups of sample data due to their larger study risk 
parameter and adopted 720 groups of data as the 
training sample.  After the training of the parameters 
to the allowable range of error, the validity of the 
model is verified by the remaining 123 groups of 
data.  The prediction result is shown in Figure 2 for 
the 123 samples with the model after training.  In the 
figure, the abscissa is arranged in the increasing 
order of coal’s ratio of volatilisation.  The prediction 
error is shown in Figure 3.  The biggest error is 
8.7%, which is in the allowable range. 

 
4. THE PREDICTION OF HYDROGEN 

CONTENT IN COAL USING NN  
For a good model, the square difference of the 
estimated error should be equal or less than 10-2.  We 
can use the following formula as the square 
difference of the error [Bakirtzis et al, (1996) and 
Hou et al, (1996)]. 

 
Since coal qualities usually vary from seam to seam, 
it is more difficult and impossible to predict the 
hydrogen content for any coal with a single NN 
model without compromising the precision of the 
prediction.  In order to overcome this difficulty, we 
separate the coals into several categories according 
to the differences in ratios of volatile matter, ratios of 
ash content, ratios of dry air moisture and the ratios 
of lower heating values.  NN is then applied to 
predict the hydrogen content of each type of the coal 
respectively. 
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(1) Selection of the structural parameters of the 

BP NN 
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 Fig.2 Prediction Results of Hydrogen Content in Coal based on 

Neural Network 
 
where e(k) is the difference between the predicted 
value and the measured value.  The square difference 
of the estimated error is shown in Table 1.  From 
Table 1, we can see that the standard square 
difference of the estimated error for this model is less 
than 10-2, which demonstrate that the NN can better 
predict the amount of hydrogen in the coal. 
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Table 1: Validity Verification of Predicted Model 

n y  squared 
difference 

standardised 
squared difference 

123 3.27 0.017 0.0016 2y  
 
In the above results only 123 samples are not training 
samples in all the samples, and hence they are the 
ones used to establish the validity and reliability of 
the model.  The standard square difference of the 
estimated error for the model is also less than 10-2 
when less samples were used for the checking  
(i.e. n < 123 in Table 1).  Furthermore, the 
standardised squared difference of the estimated 
error for the model also improves substantially for n 
> 123 at the expense of increasing computational 
load. 
 

5. CONCLUSIONS 
 
NN has great potential for modelling non-linear 
systems and uncertain processes.  In this paper, we 

proposed the concept of sample study risk for NN, 
and applied it to the prediction of the hydrogen 
content in the coal.  The control of sample study risk 
can accelerate the convergence of training for the 
NN and accurate prediction of the hydrogen content 
in coal also demonstrates that the control of study 
risk is valid for the convergence of the trained NN. 
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