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Abstract: Administration of certain drugs at a steady rate results in a deterioration
of the drug effect due to a phenomenon known as tolerance. Periodic drug delivery
is an attractive option for maximizing the effect of drugs exhibiting tolerance. In
this paper, periodic drug infusion strategies for maximizing an averaged measure
of the drug effect are investigated. A simple pharmacokinetic-pharmacodynamic
model of a system exhibiting tolerance is considered and optimal periodic control
theory is employed. The regions in the parametric space where periodic infusion
gives better drug effect than steady infusion are characterized using the so-
called π test. The optimal drug delivery strategy obtained using two different
computational approaches are presented for a representative set of parameter
values and insight is provided into the results. The first method, proposed by
the authors, is based on the notion of differential flatness and the second, is based
on the standard shooting method for dynamic optimization problems.

1. INTRODUCTION

Periodic delivery of drugs has been observed to be
more efficient than a steady delivery in the case of
hormonal therapy or when the drug exhibits toler-
ance (Siegel 1997). In many studies on hormonal
therapy, it has been observed that if a hormone or
a drug that promotes the production of a hormone
is administered periodically to match the natural
rhythm of the hormone release in the body, it
has a better effect. A drug is effective when its
concentration is between the levels of a minimum
effective concentration (MEC) and a mean toxic
concentration (MTC). These limits do not change
with time of exposure to the drug for normal
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drugs. However, for drugs that exhibit tolerance,
MEC increases with increasing exposure and may
even increase beyond MTC thus making the drug
totally ineffective. Thus a periodic infusion of the
drug is more suitable for drugs with tolerance.
Some recent work on the design of periodic drug
delivery systems can be found in (Siegel 1997, Zou
and Siegel 1999, Leroux and Siegel 1999).

In this paper, a simple pharmaco-kinetic, pharmaco-
dynamic model of a drug is considered and the
question whether periodic drug infusion is more
effective in a time-averaged sense is investigated.
The problem is formulated as an optimal periodic
control (OPC) problem so that the powerful an-
alytical and computational techniques developed
for OPC problems can be employed (Bittanti and
Guardabassi 1986, Bernstein and Gilbert 1980,
Maurer et al. 1998, Varigonda et al. 2004). In
particular, the so-called π-test is used to assess
when small periodic variations around the optimal
steady state (OSS) can improve the OSS per-
formance, a situation known as local properness.
The region in a two dimensional parameter space



where the problem is locally proper is computed.
Since the π-test is local and only concerns small
sinusoidal inputs, more elaborate computations
using dynamic optimization methods are required
to obtain a solution to the OPC problem. Due
to the periodicity of the constraints on the state
and the unknown period, the OPC problem is
computationally harder than other dynamic opti-
mization problems. The solution to the OPC prob-
lem is obtained using two computational methods,
both of which produce a consistent solution. The
first method is based on flatness as described in
(Varigonda et al. 2004) and the other, a shoot-
ing method provided by a commercially available
software tool, gPROMS (PSE n.d.).

2. DRUG DELIVERY SYSTEM MODEL AND
FORMULATION OF THE OPC PROBLEM

Here, a variation of the model for tolerance pro-
posed in (Porchet et al. 1988) is considered for the
cardio-accelerating effect of nicotine. It is demon-
strated that periodic delivery gives better perfor-
mance than steady delivery. The model accounts
for tolerance of the drug through the action of
a hypothetical metabolite produced by the drug.
The metabolite acts as an antagonist and reduces
the drug effect. The system consists of a two com-
partment pharmacokinetic model that describes
the time evolution of the drug concentration, c
and the antagonist concentration, a and a phar-
macodynamic model that describes the effect of
the drug in terms of c and a.

The non-dimensionalized dynamics are linear and
are given by

ċ =−c + u (1)

ȧ = Ka(c− a) (2)

where u is the drug infusion rate and Ka is the
rate constant for antagonist elimination. The drug
effect is described by

E(c, a) =
c

(1 + c)(1 + a/a∗)
(3)

where a∗ is a measure of the relative potency of
the antagonist. The variables c, a and u are all
constrained to be positive. In addition there is an
upper bound on u reflecting the maximal rate at
which the drug can be delivered.

The objective considered is to keep E in a pre-
scribed interval [E1, E2] which can be interpreted
for the nicotine system as the desired interval
for the heart rate. To represent this objective as
a maximization, a smooth indicator function is
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Fig. 1. Plot of the indicator function I(E). The
OSS value and the desired interval of the
effect E are marked.

employed. The indicator is close to unity when
E ∈ [E1, E2] and close to zero otherwise. The
following indicator function is used:

I(E) =
(E/E1)γ

[1 + (E/E1)γ ][1 + (E/E2)2γ ]
.

A plot of I(E) is shown in Fig 1.

The objective is to optimize the drug effect indi-
cator, I with respect to the drug infusion rate, u.
Both steady and periodic profiles for u are con-
sidered. When u is steady, equilibrium solutions
of the system in Eqs 1–2 are sought where the
objective J = I(E) is maximized. This results in
an optimum steady state (OSS) problem. When u
is periodic, the time average of the indicator over
one time period, given by

J =
1
T

T∫

0

I(E)dt

is taken as the objective function for maximiza-
tion. The period T is unknown and needs to be
determined from optimization. In order to be able
to repeat the periodic delivery strategy, the states
of the system are required to be periodic as well,
with the same period. This results in an optimal
periodic control (OPC) problem.

3. ANALYSIS USING THE π TEST

A periodically varying u may provide better av-
erage drug effect than the OSS solution and in
that case, the OPC problem is said to be proper.
If performance improvements can be obtained by
small sinusoidal perturbations of the input around
the OSS, then the OPC problem is said to be lo-
cally proper. Local properness implies properness
but the converse is not true. The so-called π-test



can be used to determine local properness of an
OPC problem (Bittanti et al. 1973, Bernstein and
Gilbert 1980).

Consider the OPC problem of minimizing J =
g(y) over the inputs, u(·) and the period, T for
dynamical system described by ẋ = f(x, u) with
averaged outputs y = 1

T

∫ T

0
φ(x, u) dt. Define the

Hamiltonian of the system as

H(x, u, y, λ, µ) = g(y) + λ′f(x, u) + µ′(φ(x, u)− y)

where λ(·), µ are the Lagrange multipliers. No-
tice that the sign of µ is different from that of
(Bernstein and Gilbert 1980). This definition en-
sures consistency of the OSS and OPC Hamil-
tonians. Let prime denote the transpose and an
overbar denote the OSS value. Let G(s) be the
transfer function corresponding to the linearized
dynamics at the OSS i.e., G(s) = (sI − f̄x)−1f̄u.
The π-test for the local properness of OSS requires
that the self-adjoint matrix π(ω) defined by

π(ω) = G′(−jω)H̄xxG(jω) + H̄uxG(jω)

+G′(−jω)H̄xu + H̄uu

be partially negative for some frequency, ω >
0 (Bernstein and Gilbert 1980). The π-test can
be used to readily determine if small sinusoidal
perturbations of the input u around the OSS value
ū give any improvement in the performance.

The steady state of the system for any given u
is given by c = a = u and the optimum steady
state (OSS) can be computed by maximizing I(E)
which gives c = a = u =

√
a∗ and E =

√
a∗

(1+
√

a∗)2
.

The nominal parameter values for the problem
are Ka = 0.1, a∗ = 1, E1 = 0.3, E2 = 0.6
and γ = 10. The optimum steady state (OSS)
is at c = a = u = 1 and the OSS drug effect
is Es = 0.25. The indicator function at OSS is
I(Es) = 0.1390. The bounds on the input are
taken as umin = 0 and umax = 10. The optimum
steady state (OSS) is at c = a = u = 1 and the
OSS drug effect is Es = 0.25. The value of the
indicator function at OSS is I(Es) = 0.1390.

Since the drug effect E at the OSS is below
E1, steady state operation does not adequately
fulfill the requirement that E be in the interval
[E1, E2]. The π test is applied to determine the
local properness. A plot of π(ω) vs. the frequency,
ω is shown in Fig 2. Negative values of the π
function over some frequency range indicates that
the system is proper and periodic operation can
improve the drug effect.

In order to understand the influence of the param-
eter values Ka and a∗ on the local properness,
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Fig. 2. Result of the π test for the drug effect
model with Ka = 0.1 and a∗ = 1
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Fig. 3. Grid points in the Ka-a∗ space (log-log
scale) where the π test is applied (marked by
+). Circled points indicate local properness,
that is, the superiority of small amplitude
periodic delivery over steady delivery.

the π-test is applied for several combinations of
Ka and a∗. Fig 3 shows the region in the Ka-a∗

space (in log-log scale) where the system is locally
proper. It can be seen that the region over which
the system is locally proper and small amplitude
periodic drug delivery is superior to steady deliv-
ery is rather large. The surface plot of minω π(ω)
in Fig 4 shows the extent of improvement that can
be obtained with small amplitude periodic inputs
in the Ka-a∗ parameter space.

4. COMPUTATION OF THE OPTIMAL
PERIODIC DRUG DELIVERY STRATEGY

Since the π-test is only local in nature, one cannot
determine the exact shape of the periodic control
signal that maximizes the drug effect from this
test. Computational methods for dynamic opti-
mization, with some modifications, need to be
employed for this purpose (Bryson 1999, Maurer
et al. 1998). It should be emphasized that the com-
putation for the OPC problem is, in general, much
harder than a regular optimal control problem due
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Fig. 4. Surface plot of minω π(ω) as a function
of Ka and a∗. Large negative values of min π
indicate stronger gains from periodic delivery.

to the fact that the constraints on the state are
periodic and the time period is also unknown.

First, the method based on differential flatness
described in (Varigonda et al. 2004) to obtain
the optimal periodic drug infusion strategy is ap-
plied. Differential flatness (or simply, flatness),
is the property of a dynamical system that is
related to the concepts of absolute equivalence
and dynamic feedback linearizability (van Nieuw-
stadt et al. 1998, Martin et al. 2003). The system
described by ẋ = f(x, u) is differentially flat if
there exist outputs ξ ∈ Rm depending on x, u
and a finite number of time derivatives of u (i.e.,
ξ = h(x, u, u̇, . . . , u(ρ)) ) such that x, u can be
expressed solely as functions of ξ and its deriva-
tives upto order κ (Fliess and et al. 1995). The
vector ξ must be of the same dimension as u and
is called the flat output of the system. An optimal
control problem on a flat system can be reformu-
lated as a static optimization problem for efficient
computation (Kansal et al. 2000, Oldenburg and
Marquardt 2000, Mahadevan et al. 2000). The
need for integration of differential equations is re-
moved by restating the problem in terms of the so-
called flat outputs. A computational method for
OPC problems using flatness has been presented
in (Varigonda et al. 2004) and this approach has
been used for the current drug delivery problem
to compute the OPC solution.

The objective to be maximized in the OPC prob-
lem is the time average of the indicator given by

J(u, x(0), T ) =
1
T

T∫

0

I(E(c, a))dt.

The dynamics in (1)–(2) are linear and flat with
the output ξ = a. The states and input can be
determined from Ξ := [ξ, ξ̇, ξ̈] using the relations

a = ξ

c =
ξ̇

Ka
+ ξ

u =
ξ̈

Ka
+ (1 +

1
Ka

)ξ̇ + ξ.

The highest order derivative of the flat output is
parametrized using 2N +1 Fourier basis functions
as:

ξ(κ)(t, α) = α1 +
N∑

i=1

[α2i sin(iωt) (4)

+α2i+1 cos(iωt)] (5)

where ω = 2π/T and α = (α1, α2, . . . , αN ). Then,
the lower order derivatives ξ(κ−1), . . . , ξ are ob-
tained by successively integrating Eq. 5 (e.g. using
quadrature or Simpson’s rule), κ times, with an
integration constant βj introduced during the jth

integration. Imposing the periodicity constraints
on the states one obtains α1 = 0 and βj = 0 for
all j = 1, . . . , κ − 1 since these coefficients lead
to polynomial terms in ξ(t). Thus there are only
2N + 2 unknown parameters, namely, T , α2, . . . ,
α2N+1 and βκ to be determined by optimization.
Let

θ := [T, α2, . . . , α2N+1, βκ].

The constraints placed on the time period T and
the drug infusion rate u are 10−2 ≤ T ≤ 102 and
0 ≤ u ≤ 10 respectively. In the approximation
of ξ̈, 20 Fourier harmonics are employed (i.e.,
N = 20). The solution obtained is shown in Fig 5.
It should be noted that there are other locally
optimal solutions also for this problem and the
one selected is the one that gives the maximum
improvement in the objective. The initial guess
used and the final solution obtained for the opti-
mization parameter θ are

θ0 =




18
0.01
0.03
0
...
0

0.76




, θ =




17.8138
0.0051
0.0295

−0.0058
...

0.0023
0.7444



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Fig. 5. Optimal periodic drug infusion strategy
computed using the flatness method: (a) state
space, (b) infusion rate and (c) the effect

where the first element of θ0 is the time period
T and the subsequent terms are the coefficients
of the Fourier expansion of ξ̈. The final term is
the integration constant β2 that appears in ξ. The
average of the indicator under periodic operation
is approximately 0.3537 and the improvement over
OSS is 0.2147.

Secondly, the same OPC problem is solved using
the dynamic optimization feature of the commer-
cial modeling software, gPROMS (PSE n.d.). Two
solvers based on control vector parametrization
(CVP) are provided in gPROMS for dynamic opti-
mization. These are CVP SS (single shooting) and
CVP MS (multiple shooting). CVP refers to the
fact that the control signals u are assumed to be of
certain shape (e.g., piecewise linear and piecewise
constant) and are represented in terms of a few
parameters. In order to be able to solve the OPC
problem using gPROMS, the problem was refor-
mulated as a fixed time optimal control problem
by rescaling time. Thus, the simulation time was
fixed at unity while the actual time period T
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Fig. 6. Optimal periodic drug infusion strategy
computed using gPROMS: (a) state space,
(b) infusion rate and (c) the effect

became an optimization parameter appearing on
the right hand side of the differential equations.
This enabled the objective function J to be cor-
rectly evaluated. The solution obtained using the
CVP SS method with 5 piecewise linear segments
for u is shown in Fig 6. The similarities in the
shape of the trajectory in state space, the input
profile and the shape of the drug effect between
Fig 5 and Fig 6 are obvious. The differences near
the discontinuities are mainly due to the difference
in the choice of basis functions.

The numerical improvement in the indicator I(E)
itself is not a significant factor since a higher
magnitude of improvement can be obtained by
using an indicator function that is steeper around
the OSS. However, the qualitative features of the
solution merit attention. The solution is not of
bang-bang type but conforms to the intuitive idea
that in presence of tolerance, the best strategy
to administer the drug is to give a dose initially
that will pump up the effect, while the antagonist
is still building up. Once the effect reaches the



desirable value, there is no more incentive in
giving more drug. Hence the goal is to only
maintain E at the current value for as long as
possible. When the antagonist concentration a
rises and starts reducing the drug effect, then u
needs to be increased again to compensate for
the decreasing effect. Ultimately, the antagonist
concentration becomes dominating and then u
needs to be shut down until a also goes down
sufficiently. The cycle then repeats itself.

5. CONCLUSION

A simple pharmacokinetic, pharmacodynamic model
of a drug that exhibits tolerance is proposed and
an optimal periodic control problem to determine
a periodic drug infusion strategy that improves
the drug effect is formulated. The local properness
of the OPC problem was established using the
π-test. The region in the parameter space where
the problem is locally proper was also determined
using the π-test. The optimal periodic drug in-
fusion rate as a function of time was computed
using two very different methods and a consistent
solution was obtained. Future work will focus on a
better understanding of the modeling aspects that
capture the observed superiority of periodic drug
administration.
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