
SUBSPACE IDENTIFICATION USING THE
PARITY SPACE

Jin Wang ∗∗ S. Joe Qin ∗,1

∗Department of Chemical Engineering
The University of Texas at Austin, Texas, USA

∗∗Advanced Process Control
Advanced Micro Devices, Inc. Texas, USA

Abstract: It is known that most subspace identification algorithms give biased
estimates for closed-loop data due to a projection performed in the algorithms.
In this work, consistency analysis of SIMPCA is given and the exact input re-
quirement is formulated. The effect of column weighting in subspace identification
algorithms is discussed and the column weighting for SIMPCA is designed which
gives consistent estimates of state-space models from both open loop and closed-
loop data. A simulation example is given to demonstrate the performance of the
proposed algorithm.
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1. INTRODUCTION

Subspace identification algorithms have been de-
veloped in the past two decades. Based on numer-
ically robust singular value decomposition (SVD),
these algorithms are simple and completely bypass
the need for the estimation of structure index,
which causes no additional difficulty when han-
dling MIMO systems (Gevers, 2003). The asymp-
totic properties of these subspace algorithms also
have been investigated in the past decade and
consistency conditions of the estimates have been
identified (Deistler et al., 1995; Peternell et al.,
1996; Jansson and Wahlberg, 1998; Bauer et
al., 1999; Knudsen, 2001).

Because most subspace identification algorithms
perform a projection of the future output onto
the orthogonal complement of future input, which
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requires future input to be uncorrelated to past
noise, the application of these algorithms to
closed-loop data typically gives biased estimates
even though the data satisfy identifiability con-
ditions for prediction error methods. To address
this aspect, algorithms for closed-loop identifi-
cation have been developed in the last a few
years (Chou and Verhaegen, 1997; Ljung and
McKelvey, 1996; Forssell and Ljung, 1999; Wang
and Qin, 2002; Huang et al., 2003).

The aim of this paper is to present a modifica-
tion of our recently developed algorithm — SIM-
PCA (subspace identification method via princi-
pal component analysis), which gives consistent
estimates of state-space models from both open
loop and closed-loop data, under some input ex-
citation conditions. The remaining part of the
paper is organized as follows. Section 2 gives the
problem formulation and assumptions. Section 3
reviews the original SIMPCA algorithm. The ex-
act input requirement and consistency analysis are



given in this section. Section 4 presents the mod-
ified algorithm, SIMPCA with column weighting
(SIMPCA-Wc), and discusses the effect of column
weighting. Section 5 gives the simulation example.
The final section gives conclusions to the paper.

2. PROBLEM FORMULATION AND
ASSUMPTIONS

The original SIMPCA algorithm (Wang and Qin,
2002) was developed to address errors-in-variables
case, and it is applicable to innovation formula-
tion. Consider the linear time-invariant system in
its innovation representation:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (1)

y(k) = Cx(k) + Du(k) + e(k) (2)

Here x(k) ∈ <n is the state vector, u(k) ∈ <l and
y(k) ∈ <m are the measured input and output
signals. e(k) ∈ <m is the innovation process.

2.1 Assumptions

We introduce the following assumptions:

A1: The system is asymptotically stable.

A2: (A, C) is observable.

A3: (A, [B K]) is controllable.

A4: The input u and innovation e are jointly
stationary and one-way uncorrelated, i.e.,

Ē[e(k)e(l)T ] = Reδkl (3)

Ē[e(k)u(l)T ] = 0, k > l (4)

where Ē is defined as (Ljung, 1999)

Ē{•} = lim
N→∞

1
N

N∑

k=1

E{•} (5)

Eqn (4) allows us to include closed-loop iden-
tification in the proposed method. In order to
get consistent identification results, a persistent
excitation condition on the input is introduced
later.

2.2 Preliminaries

An extended state-space model can be formulated,

Yf = ΓfXk + HfUf + GfEf (6)

Yp = ΓpXk−p + HpUp + GpEp (7)

where Γf is the extended observability matrix
with rank n, Hf and Gf are two triangular
Toeplitz matrices as follows,

Γf =




C
CA
...
CAf−1


 ∈ <

mf×n (8)

Hf =




D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAf−2B CAf−3B · · · D


 ∈ <

mf×lf

(9)

Gf =




I 0 · · · 0
CK I · · · 0

...
...

. . .
...

CAf−2K CAf−3K · · · I


 ∈ <

mf×mf

(10)
The future and past data are arranged in the
following Hankel form:

Yf =




y(k) y(k + 1) · · · y(k + N − 1)
y(k + 1) y(k + 2) · · · y(k + N)
y(k + f − 1) y(k + f) · · · y(k + f + N − 2)




≡ [
yf (k) yf (k + 1) · · · yf (k + N − 1)

] ∈ <mf×N

Yp =




y(k − p) y(k − p + 1) · · · y(k − p + N − 1)
y(k − p + 1) y(k − p + 2) · · · y(k − p + N)
y(k − 1) y(k) · · · y(k + N − 2)




≡ [
yp(k) ypf(k + 1) · · · yp(k + N − 1)

] ∈ <mp×N

Uf , Up, Ef and Ep are formulated similarly.

Eqn (6) is the basis for many subspace identifica-
tion methods (SIM).

3. THE ORIGINAL SIMPCA ALGORITHM

SIMPCA includes two steps: i) identifying the
extended observability matrix Γf and the block
triangular Toeplitz matrix Hf ; ii) estimating sys-
tem matrices A, B, C and D.

We begin with the extended state-space model of
Eqn (6). Instead of focusing on the observable sub-
space, SIMPCA algorithm focuses on the parity
subspace, which is commonly used in fault detec-
tion (Chow and Willsky, 1984). Pre-multiplying
Eqn (6) with (Γ⊥f )T , the orthogonal complement
of Γf with full column rank, and moving the input
term to the left hand side, Eqn (6) becomes

(
Γ⊥f

)T
[I | −Hf ]Zf =

(
Γ⊥f

)T
GfEf (11)

where Zf ≡
[
Yf

Uf

]
.

In order to achieve the consistent estimates of Γf

and Hf under the noise-corrupted condition, we
use instrumental variables to remove the noise. An
important property of the instrumental variables
is that they should be uncorrelated with the noise,
and sufficiently correlated with the informative



part of the data. Other work (Verhaegen and
Dewilde, 1992; Verhaegen, 1994) shows that past
input and past output together is a good choice
for instrumental variables. It is easy to see that

lim
N→∞

1
N

EfZT
p = lim

N→∞
1
N

Ef [YT
p UT

p ] = 0 (12)

because of the Assumption A4.

In order to obtain consistent estimation under
the noise-corrupted condition, the input excita-
tion condition is needed, which is stated in the
following lemma.

Lemma 1. Given general Assumptions A1 ∼ A4
and p ≥ f > n, 1

N ZfZT
p has mf − n zero singular

values when N →∞, if Ē
{[

x(k)
uf (k)

]
zp(k)T

}
has

full row rank.

Proof. See Appendix A.

A similar condition (Ē

{[
uf (k)
x(k)

] [
uf (k)
zp(k)

]T
}

has full row rank) was derived in Viberg et al.
(1997) for the IV-4SID method.

Remark 1 Although regarded as fully excited
for other subspace identification methods, white
noise input is not a suitable input for SIMPCA.
If the input is white noise, limN→∞ 1

N UfZT
p =

0 and the input excitation condition is not
satisfied for SIMPCA. Similarly, for closed-loop
identification, the input perturbation needs to
be correlated in order to meet the input excita-
tion condition.

Based on lemma 1, we formulate the following
theorem for the combined determinate-stochastic
realization.

Theorem 1. Given the general assumptions A1 ∼
A4, the persistent excitation condition in Lemma
1, and the following PCA decomposition,

1
N

ZfZT
p = PTT + P̃T̃T (13)

when N →∞, we have
[

Γ⊥f
−HT

f Γ⊥f

]
= P̃M (14)

where M ∈ <(mf−n)×(mf−n) is a non-singular
matrix.

Proof. See Appendix B.

Remark 2 Because projecting out the future
input is avoided in SIMPCA, we only require
that the future noise is independent of past
input, which is true for closed-loop operation.
Therefore, SIMPCA is applicable to closed-loop
identification provided that the input excitation
condition is satisfied.

Remark 3 SIMPCA is applicable to errors-in-
variables situation, which has been discussed

in Wang and Qin (2002). Besides, SIMPCA is
applicable to the colored noise that is finitely
correlated. We only need to separate Zf and Zp

farther beyond the correlation window. Colored
noise is also treated in Stoica et al. (1995) and
Li and Qin (2001).

After the parity space is identified, Γf , Hf and
matrices A, B, C and D can be estimated follow-
ing Wang and Qin (2002).

4. SIMPCA WITH COLUMN WEIGHTING

Like other subspace-based system identification
methods, SIMPCA also obtains an estimate of
the extended observability matrix first, that is,
the column space of the extended observability
matrix. It is thus of great interest to optimize the
estimate of the observability matrix. One special
direction is to apply certain weighting matrix to
improve the estimate. Several contributions in the
literature have appeared in this area (Jansson
and Wahlberg, 1996; Viberg et al., 1997; Gustafs-
son, 2002). Although different approaches of anal-
ysis were adopted, it is interesting to note that
the column weightings in Jansson and Wahlberg
(1996) and Verhaegen (1994) all correspond to the
CVA weighting of Larimore (1983).

In Gustafsson (2002), an asymptotic analysis of
the estimated observability matrix is presented,
and an optimal column weighting matrix Wo

c is
derived. It is also interesting to note that an
approximation of Wo

c given in Gustafsson (2002)
is the same as the column weighting employed by
CVA and MOESP, as pointed out in Viberg et al.
(1997).

Define Rxy(τ) as the cross-covariance matrix of x
and y

Rxy(τ) = Ē{x(t + τ)yT (t)} (15)

and let Rxy = Rxy(0), the approximate optimal
weighting in Gustufsson (2002) is

Wa
c = (Rzpzp −RT

ufzp
R−1

ufuf
Rufzp)−

1
2

= (
1
N

ZpΠ⊥
Uf

ZT
p )−

1
2 (16)

where Π⊥
Uf

= I−UT
f (UfUT

f )−1Uf .

In the framework studied in Gustafsson (2002), an
instrumental variable approach reduces Eqn (6) to
the following relation,

lim
N→∞

1
N

YfΠ⊥
Uf

ZT
p = lim

N→∞
1
N

ΓfXkΠ⊥
Uf

ZT
p

(17)
Post-multiplying the column weighting in Eqn (16)
leads to:

lim
N→∞

1
N

YfΠ⊥
Uf

ZT
p (ZpΠ⊥

Uf
ZT

p )−
1
2



= lim
N→∞

1
N

ΓfXkΠ⊥
Uf

ZT
p (ZpΠ⊥

Uf
ZT

p )−
1
2 (18)

Denoting ZU⊥ ≡ ZpΠ⊥
Uf

as the generalized in-
strumental variables, the left hand side of the
above equation reduces to

YfZT
U⊥(ZU⊥ZT

U⊥)−
1
2 = YfZT

U⊥Wa
c (19)

Therefore, the approximate optimal column weight-
ing can be interpreted as scaling the generalized
instrumental variable to unit variance since

(ZT
U⊥Wa

c )T (ZT
U⊥Wa

c ) = Wa
cZU⊥ZT

U⊥Wa
c = I

(20)

Because SIMPCA also picks the subspace by per-
forming SVD (PCA) on process data and instru-
mental variables are applied to remove noise, it
would be beneficial to scale the instrumental vari-
ables to unit variance. In SIMPCA, since project-
ing out of future input is not needed, the gener-
alized instrumental variables is just past data Zp.

In this case, Wa
c is simply

(
ZpZT

p

)− 1
2 , which is

the same weighting applied in IV-4SID (Viberg,
1995).

In summary, SIMPCA with column weighting
(SIMPCA-Wc) is based on the following equation,

1
N

(
Γ⊥f

)T
[I | −Hf ]ZfZT

p

(
ZpZT

p

)− 1
2

=
1
N

(
Γ⊥f

)T
GfEfZT

p

(
ZpZT

p

)− 1
2 (21)

The right hand side of Eqn (21) goes to zero
as N → ∞ due to Assumption A4. Therefore,
performing PCA on ZfZT

p

(
ZpZT

p

)− 1
2 can extract

the residual subspace which contains the system
information. The remaining steps in SIMPCA-
Wc to estimate A, B, C, D are the same as
in SIMPCA. Simulation results show that the
column weighting matrix

(
ZpZT

p

)− 1
2 can signif-

icantly improve the variance of estimates com-
pared to SIMPCA, as shown in the next section.
It is interesting that applying the CVA column
weighting can achieve the similar performance as
the SIMPCA column weighting.

In Huang et al. (2003) a subspace orthogonal pro-
jection identification method (SOPIM) for closed-
loop identification is proposed based on the SIM-
PCA structure. In the proposed SOPIM, the par-
ity space is extracted through an orthogonal pro-
jection of the future input and output on the row
space of past input and output, i.e.,

(
Γ⊥f

)T [
I −Hf

]
ZfΠZp =

(
Γ⊥f

)T
GfEfΠZp

(22)
where the right hand side goes to zero when
the number of observations goes to infinity. It is
interesting to notice that the projection of future
data on the row space of past data is

ZfΠZp = ZfZT
p (ZpZT

p )−1Zp (23)

which is closely related to SIMPCA-Wc, as shown
in the following,

ZfZT
p Wc = ZfZT

p (ZpZT
p )−

1
2 (24)

it is clear that ΠZp =
(
ZT

p Wc

) (
ZT

p Wc

)T also has
unit variance.

5. SIMULATION STUDY

In this section a simulation study is presented to
demonstrate the performance of SIMPCA algo-
rithm. Results from SIMPCA, N4SID with CVA
weighting in the Matlab System Identification
Toolbox (version 5.0) (CVA via N4SID), SIM-
PCA with column weighting (SIMPCA-Wc) and
MOESP-PO are presented for comparison. The
simulation example is a first order SISO system,
where both open-loop and closed-loop operations
are examined. The system order is given.

The system under test is given by the following
difference equation:

y(k)− 0.9y(k− 1) = u(k− 1) + e(k) + 0.9e(k− 1)
(25)

The input to the system has the following struc-
ture

u(k) = −λy(k) + r(k) (26)

where λ can be set to different values to achieve
both open loop and closed-loop operations. The
open loop input excitation signal r(k) is a moving
average process:

r(k) = (1 + 0.8 q−1 + 0.6 q−2)r0(k) (27)

where r0(k) is zero mean white noise sequence
with unit variance.

5.1 Open-loop case

In this case λ = 0. Process noise e(k) is added
to the system, where e(k) is zero mean white
noise sequence with standard deviation σe = 1.2.
Monte-Carlo experiments are conducted and 50
runs are performed. For each run, 7000 data points
are collected for identification. Fig. 1 shows the
Bode plot of the identified system from differ-
ent algorithms. In order to compare the relative
efficiency of different methods, the asymptotical
performance is shown in Fig. 2, where the mean
squared error of the pole estimation given dif-
ferent number of samples is plotted. It shows
that SIMPCA-Wc performs similarly to CVA(via
N4SID) and MOESP, while SIMPCA is worse
than the other three methods.

5.2 Closed-loop case

In this case λ = −0.6. Fig. 3 shows the Bode
plot under combined deterministic-stochastic case



where the number of data point is 105. Ap-
parently CVA(via N4SID) and MOESP give bi-
ased estimates, while estimates from SIMPCA
and SIMPCA-Wc are unbiased. We also plot the
asymptotic performance of different methods un-
der closed-loop in Fig. 4, which confirms that
SIMPCA and SIMPCA-Wc give unbiased esti-
mates. Compared to more efficient SIMPCA-Wc,
SIMPCA requires more data to achieve same level
of estimate variance.

As we discussed in Remark 1, white input pertur-
bation is not ideal for SIMPCA because it does not
satisfy the input excitation condition. Huang et al.
(2003) point out that if the input perturbation is
white noise, the controller dynamic will also fall
into the left null space of ZfZT

p , which will make
the estimate from SIMPCA biased. A remedy is
also proposed in Huang et al. (2003). By including
the input perturbation as part of the instrumental
variable, it is guaranteed that the left null space
of ZfZT

p contains only the process dynamics.

6. CONCLUSION

In this paper, consistency analysis of SIMPCA
with focus on the deterministic part is given.
Because SIMPCA makes use of parity space to
estimate system model and avoids projecting out
the future input, it is applicable to closed-loop
data, provided that the input excitation condi-
tion is satisfied. A modification of original SIM-
PCA (SIMPCA-Wc) is presented. By scaling the
instrumental variables to unit variance through
column weighting, SIMPCA-Wc can significantly
improve the estimate efficiency. A simulation ex-
ample shows that the designed column weighting
can significantly reduce the variance of the esti-
mates.
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Appendix A. PROOF OF LEMMA 1

From the extended state-space model Eqn (6), we
have

Zf =
[
Yf

Uf

]
=

[
Γf Hf

0 Ilf

] [
Xk

Uf

]
+

[
Gf

0

]
Ef

(A.1)
Post-multiply the instrumental variable ZT

p to
remove noise,

lim
N→∞

1
N

ZfZT
p =

[
Γf Hf

0 Ilf

] [
Xk

Uf

]
ZT

p (A.2)

Because f > n, rank(Γf ) = n, and
[
Γf Hf

0 Ilf

]

has full column rank, which is lf + n. There-

fore, if Ē
([

x(k)
uf (k)

]
zp(k)T

)
has full row rank,

rank
(

1
N ZfZT

p

)
= lf + n as N →∞.

Appendix B. PROOF OF THEOREM 1

Eqn (6) can be rearranged as
[
I | −Hf

]
Zf = ΓfXk + GfEf (B.1)

In order to remove the noise term, multiply 1
N ZT

p

to both sides of the above equation,
1
N

[
I | −Hf

]
ZfZT

p =
1
N

ΓfXkZT
p +

1
N

GfEfZT
p

(B.2)
while

lim
N→∞

1
N

EfZT
p = 0 (B.3)

when N →∞
1
N

[
I | −Hf

]
ZfZT

p =
1
N

ΓfXkZT
p (B.4)

pre-multiply the above equation with
(
Γ⊥f

)T

to
remove state,

1
N

(
Γ⊥f

)T [
I | −Hf

]
ZfZT

p = 0 (B.5)

Following the same procedure as in proof of theo-
rem 1, it is straight forward to show that

[
Γ⊥f

−HT
f Γ⊥f

]
= P̃M (B.6)

where M ∈ <(mf−n)×(mf−n) is a non-singular
matrix.
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Fig. 1. Bode plot of the identified system for the
open loop case

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of samples

M
S

E

SIMPCA
CVA
SIMPCA−Wc
MOESP

Fig. 2. Mean squared error of pole estimate versus
number of samples for the open loop case
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Fig. 3. Bode plot of the identified system for the
closed-loop case
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number of samples for the closed-loop case
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