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Abstract: This paper proposes the application of Gaussian process regression for the 
empirical modelling of batch processes to provide long range predictions. Gaussian 
processes are flexible, non-parametric Bayesian regression techniques.  In the training 
stage, hyper-parameters that define the covariance structure of the Gaussian process can 
be obtained using Markov Chain Monte Carlo sampling. Model predictions can then be 
achieved by taking the average of the Monte Carlo samples. The proposed technique is 
evaluated by application to a benchmark simulation of a fed-batch bioreactor.  The results 
show that comparable results can be achieved with other non-parametric modelling 
approaches such as recurrent neural networks.  Copyright © 2004 IFAC 
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1. INTRODUCTION 

 
It can be argued that the core task in process control 
and process optimisation is the establishment of an 
accurate model of the process. One approach has 
been to build a mechanistic model of the process. 
However, the development of mechanistic models for 
complex batch processes is challenging and time-
consuming. In addition, the mismatch between the 
model and the real process is generally not negligible 
and hence needs to be incorporated within the 
analysis. Consequently a number of data-based 
parametric/non-parametric modelling methods have 
been applied in process manufacturing applications, 
including the linear latent variable techniques of 
Principal Component Analysis (PCA), Partial Least 
Squares (PLS) (Kourti, 2003) along with the non-
linear approach of neural networks (e.g. Tian, et al., 
2002).  
 
More recently, Bayesian statistical tools have 
emerged as promising solutions to a number of 
modelling and model related problems in process 
engineering. Bayesian inference is a procedure 
whereby a probability model is fitted to a set of data 

and the results are summarised in terms of the 
posterior probability distribution (Gelman, et al., 
1995; West and Harrison, 1997). The Bayesian 
approach provides a natural way to incorporate prior 
information with observed data from a real process, 
leading to generally better performance than non-
Bayesian approaches in many applications, e.g. 
Nounou, et al., (2002).  
 
Gaussian processes are non-parametric Bayesian 
regression models formulated from Gaussian prior 
distributions defined over the infinite-dimensional 
space of all possible regression functions. The 
behaviour of a Gaussian process model can be 
controlled through the covariance function in terms 
of the underlying hyper-parameters. A wide variety 
of covariance   functions   can   be applied in 
Gaussian process modelling subject to the   
requirement that the function must result in a non-
negative definite covariance matrix (Neal, 1997).  
 
For a Bayesian approach, the hyper-parameters have 
an associated prior distribution with their posterior 
distribution being identified using Markov Chain 
Monte Carlo (MCMC) approaches as opposed to 



  

     

analytical Bayesian inference. This is because of the 
difficulty of integrating analytically over a posterior 
distribution that is of complicated form (Brooks 
1998).  Predictions can then be achieved by 
averaging over the Monte Carlo samples.   
 
In Rasmussen’s (1996) work, it was demonstrated 
that Gaussian process models have comparable, if not 
better, predictive performance than other 
nonparametric regression methods such as neural 
networks.  Their good predictive performance and 
analytical properties have made them increasingly 
attractive to users and has resulted in their 
widespread application in statistics, engineering and 
other fields (Neal, 1997; Shi, et al.; 2003Williams 
and Rasmussen, 1996).  
 
In this paper a Gaussian process model is developed 
for a fed-batch bioreactor for long range predictions. 
The model is implemented using one of the more 
popular MCMC methods, the Metropolis-Hastings 
(MH) algorithm (Robert and Casella, 1999). Given 
the initial state of the fed-batch reactor, multi-step-
ahead predictions can be calculated using an iterative 
approach.  The results are sufficiently accurate to 
provide the basis of model based control algorithms.  
 
 

2. GAUSSIAN PROCESS MODELLING WITH 
MCMC IMPLEMENTATION 

 
The problem to be addressed is first described. 
Consider a noisy data set D comprising N pairs of d-
dimensional input vectors and scalar outputs, i.e. 

{ }N

k
kk yD 1

)()( , == x . The primary objective is to 

establish a Gaussian process model based on this data 
set and use it to predict, y, given any new input 

D∉x . Adopting an iterative approach to the multi-
step ahead case, the new input will include the 
previous predicted values of y.   
 
 
2.1 Prediction using Gaussian Process Model  
 
As for all regression approaches, a Gaussian process 
model can be defined as: 
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where )(⋅f  is a non-linear function mapping the 

input vector x to a scalar output y. ε  is Gaussian 

noise with zero mean i.e. ),0(~ 2

vG σε .  The prior 

for )(⋅f  is assumed to be a Gaussian process, 
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is the covariance matrix. In practice normalisation is 
preferred for numerical stability, although it is not 

strictly necessary. Thus, { }N
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mean and variance given by: 
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where �  is the covariance matrix for the training 
data set: 
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The only constraint on the choice of covariance 

function ),( )()( ji xxΣ  is that it must generate a non-

negative definite covariance matrix 
�
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parameter vector. The covariance function consists of 
the following components, an exponential term 
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) and a jitter term 

( ),(2 jivδσ ). The exponential element expresses the 

hypothesis that cases with nearby inputs will have 
highly correlated outputs. The length scale, lw , 

according to each input characterises the distance in 
that particular direction over which y  is expected to 

significantly vary; and 0v  defines the vertical scale 

of variations of a typical function. The bias term adds 
a constant component to the regression function. The 
linear term expresses the linear trend of the function 
and finally the jitter term accounts for the noise in the 

data, where 2
vσ  is the variance of the noise. In 

practice, the covariance function can be defined as 
any combination of these four terms, according to the 
different properties of the function )(⋅f . 
 
 
2.2 MCMC Implementation 
 
According to the Bayesian approach, the training 
process for the Gaussian process model commences 
with the definition of a prior distribution )(

�
P  over 

the hyper-parameter space that is updated using the 



  

     

training data, D, to produce a posterior distribution 
)|( DP

�
:            

)|()()|(
���

DppDp ∝  (6) 
 

where )|(
�

Dp  is the likelihood of the training data 

for a given 
�

. Here the log-likelihood is used to 
avoid large rounding errors: 
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This procedure requires the computation of the 
inversion of the covariance matrix 

�
 of order 

NN × , which takes time, )( 3NO .  This means that 

the implementation time increases cubically as the 
size of the training data set increases, and hence 
problems may result when dealing with large data 
sets. 
 
To make predictions, integration over the posterior 
distribution of the hyper-parameters, 

�
, is 

performed: 
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Because of the difficulty of performing this 
integration analytically, Markov Chain Monte Carlo 
(MCMC) is used to generate a series of samples for �

 according to the posterior distribution, equation 
(6).  The predictions are then calculated by averaging 
over the MCMC samples of 

�
. Details of MCMC 

are given in Robert and Casell, (1999). 
 
Priors for 

�
.  The priors for 

�
 are defined as given 

by Rasmussen (1996) whilst the priors for { }lw  are 

given by inverse Gamma distributions: 
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where u  is the mean of 1−
lw .  A small value of 

α results in a vague prior. 1=α  and 10 =u  were 

selected. The priors for )log( 0v , )log( 0a  and 

)log( 2
vσ  are all Gaussian distributions with large 

variances corresponding to fairly vague priors, i.e. 

log(v0) ~ G(-3, 32), log(a0) ~ G(-3, 32) and log( 2
vσ v0) 

~ G(-1, 12). 
 
The MCMC method.  The Metropolis-Hastings 
algorithm is used to address the relationship in 
equation (6), which uses a candidate distribution 

)',(
��

q from which to sample, )|( Dp
�

. The 

algorithm can be described as follows: 
 
 
 

1. Initialization Step:  

Set 0=i and generate a random value for )0(�
; 

2. Iteration:  
For Ki :1=  
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Evaluate the acceptance probability 
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Sample    a    uniformly    distributed   u    as  

]1,0[~ Uu , if ( )��
,)1( −≤ iu α , then 

��
=)(i , otherwise, )1()( −= ii ��

. 
End 
 

In this study, )',(
��

q  is set as the transition 

distribution of a random walk with a small 
perturbation, z.  A normally distributed z with a zero 
mean vector implies that ),'()',(

����
qq = . Then 

the acceptance probability becomes: 
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A simple slowly decreasing variance for z is selected 
although more elaborate strategies, such as simulated 
annealing, could be applied (e.g. Robert and Casella, 

1999).  Assuming the initial variance for z is )0(2
zσ , 

at step i, the variance )(2 izσ  can be defined as: 
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where KT <  is the start point for 2
zσ  to decrease.  

 
After generating K samples of the hyper-parameters �

, the predictions can be made by taking an average 
over the samples: 
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where )(ˆ x�
iy  is given by equation (2) for a particular 

sample )(i�
. The variance of the prediction can then 

be calculated in a similar way: 
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2.3 Model for Processes with Multi-outputs.  
 
The theory described holds for scalar outputs.  For 
the modelling of processes with multiple outputs, 
although it is possible to define Gaussian processes 
with multi-outputs, it is not clear how the covariance 
function should be defined. Therefore, a separate 
Gaussian process model is established for each 
output to simplify the problem. However, since 
multiple outputs can share some common features, it 
may be advantageous to build this correlation 
structure into the analysis.  This new approach is 
currently under investigation.   
 
 

3. EXPERIMENTS AND RESULTS 
 
3.1 The Fed-batch Bioreactor 
 
The process used in the study is a benchmark fed-
batch bio-reactor for the production of secreted 
protein (Park and Ramirez, 1988). They considered 
the secretion of foreign protein using Baker’s yeast 
as the host organism. The mechanistic model that 
describes the dynamics of the process can be 
expressed by the following differential equations: 
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The state variables are the amount of secreted protein 
on a unit culture volume basis ( MP ), the total protein 

amount on a unit volume basis ( TP ), the culture cell 

density ( X ), the culture glucose concentration ( S ), 
and the culture volume (V ). q  is the feed flow rate 

which is used as the control variable, m  is the 
glucose concentration of the feed stream, Y  is the 
yield of glucose per cell mass and Φ , Pf , and xµ  

are the protein secretion rate, the protein expression 
rate and the specific growth rate of the host cell, 
respectively.   
 

Based on the above model, the performance of 
Gaussian process modelling of the bioreactor was 
investigated. The initial conditions of the state 
variables and parameters in the model were given by: 
 

0.0)( 0 =tPM  0.1)( 0 =tV L 

0.0)( 0 =tPT  0.20=m g/L 

0.1)( 0 =tX g/L 3.7=Y  

0.5)( 0 =tS g/L  

 
Data for 10 batches, each of 15 hours duration were 
generated. The data comprised the following 
simulated measurements, MP , S , V , and q . It is 

assumed that the measurements of V and q  are 

obtained on-line while the measurements of MP  and 

S  are recorded off-line. This reflects current 
industrial practice where many bio-product quality 
variables are measured off-line through laboratory 
analysis. The data were generated by adding 
normally distributed random noise with zero mean to 
the nominal control policies ( q ) as reported in Tian, 

et al. (2002).  Zero mean normal random noise was 
also added to all the measurements to simulate the 
effects of measurement noise. The standard 
deviations of the noise for q , MP , S  and V , were 

0.02L/hr, 0.01, 0.02g/L and 0.05L respectively. The 
sampling time is 6 min, i.e. 150 samples per batch.  
 
 
3.2 Simulation Study. 
 
There are two states of interest to be predicted, the 
amount of secreted protein MP  and the culture 

glucose concentration S , which cannot be measured 
on-line. As described in Section 2.3, separate 
Gaussian models were constructed for each state, 
GP_S and GP_ PM.  The inputs for each model 
comprised the feed flow rate q, and the predicted 

value of V ( V̂ ) using: 
 

min6,)1()1(ˆ)(ˆ =∆∆−+−= tttqtVtV  (24) 
 
and the previous predictions from the model (denoted 

Ŝ  and MP̂ ), so that the model can make long-range 

predictions for the whole batch given the initial 
measurement of V and the initial values for S  and 

MP . As the number of inputs is related to the 

dimension of the hyper-parameter 
�

, it is preferred 
that fewer input variables are included in the model 
to reduce computation time.  Also it was observed 
that prediction performance was not compromised. 
Thus the model inputs are selected as follows. For 
GP_S, the inputs are: 
 

)1(ˆ),1(ˆ),2(),1( −−−− tStVtqtq .  

 

The culture glucose concentration S  may have an 
impact on MP , consequently two models were 



  

     

developed to predict MP .  GP_ PM_1 does not 

include information on S : 
 

)1(ˆ),1(ˆ),2(),1( −−−− tPtVtqtq M
,  

 
whilst GP_ PM_2 includes the previous predictions of 
S  from GP_S : 
 

)1(ˆ),1(ˆ),1(ˆ),2(),1( −−−−− tPtStVtqtq M
.  

 
For the fed-batch process, the regression model is 
based on a smooth, continuous function, thus the 
covariance function is chosen as a simple form 
without the linear term: 
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and thus 
�

 is { }( )2
010 ,,, v

d

ll awv σ= .  During the 

training stage, 1200 iterations were run for the 
MCMC sampling of 

�
. The algorithm converged 

quickly and tended to stabilise after about 200 
iterations according to the values of the log-
likelihood. These initial 200 values were discarded. 
One sample of 

�
 was then selected from each 

consecutive set of 20 iterations resulting in a total of 
50 samples being selected to perform the prediction. 
These samples can be approximately treated as 
independent and identically distributed, according to 
the relevant posterior distribution.  
 
 
3.3 Results and Discussions. 
 
Five batches were used to train the model with a 
further 5 (batches 6-10) being used for model 
validation. The initial state values S  and MP  were 

set to the same values as in the simulation, i.e., 
0.50 =S g/L and 0.00 =MP . Using the samples of 

�
 obtained from the model training and the given 

initial states, the predictions for the whole batch were 
calculated using equations (2), (3), (14) and (15). The 
performance of the models was evaluated using the 
average Root Mean Square Error (RMSE) over the 
five validation batches, Table 1. 

 
Table 1 Results for the Prediction of  S and PM  

 

The results show that the models exhibit quite good 
performance with the RMSEs being comparable with 
those obtained by the augmented recurrent neural 
network models proposed in Tian, et al. (2002). It is 
also observed that the RMSE of model GP_PM_2 is 
smaller than for model GP_PM_1, which implies 
that S  has a direct effect on MP  and more accurate 

predictions of PM can be obtained by including S as 
an additional model input.  

 
Fig. 1. Multi-step-ahead predictions for S on 

validation batch 9 (GP_S) 

 
Fig. 2. Multi-step-ahead prediction residuals of S on 

validation batch 9 (GP_S) 

 
Fig. 3. Multi-step-ahead predictions for PM on 

validation batch  9 (GP_PM_1)  
 
To further assess the performance of the model, the 
predictions with 95% confidence bands of each 
model (without considering the uncertainty of x) are 
compared with the actual output values. Long range 
predictions of glucose concentration (S) for one of 
the validation data set (batch 9) and the 
corresponding residuals are plotted in Fig. 1 and Fig. 
2. Fig. 3 - Fig. 5 show the long range predictions and 

Model Type Input variables RMSE 
GP_S ),1(ˆ),2(),1( −−− tVtqtq

)1(ˆ −tS  

0.1218 

GP_PM_1 ),1(ˆ),2(),1( −−− tVtqtq  

)1(ˆ −tPM  

0.0435 

GP_PM_2 ),1(ˆ),2(),1( −−− tVtqtq  

)1(ˆ),1(ˆ −− tPtS M  

0.0384 



  

     

the corresponding residuals of secreted protein (PM) 
for the cases where the models do not have any 
information on S and where information on S is 
included. 

 
Fig. 4. Multi-step-ahead predictions for PM on 

validation batch 9 (GP_PM_2) 

 
Fig. 5. Multi-step-ahead prediction residuals of PM on 

validation batch 9 (GP_PM_1 and GP_PM_2) 
 
It can be seen that the predictions are satisfactory. It 
is also apparent that the predictions of GP_PM_2 are 
more accurate than those of GP_PM_1, especially 
around 10hr30min to 12hr where the secreted protein 
is beginning to increase sharply.  
 
 

4. CONLUSIONS AND DISCUSSION 
 
This paper has proposed the use of Gaussian process 
regression for batch process modelling. Gaussian 
processes are non-parametric Bayesian regression 
models which are sufficiently flexible to represent a 
wide variety of data by defining an appropriate 
covariance matrix. Hyper-parameters, which 
determine the covariance functions can be estimated 
by Markov chain Monte Carlo simulation. The model 
can be implemented using matrix computations that 
are feasible for datasets comprising over a thousand 
samples. The effectiveness of the Gaussian process 
approach has been demonstrated by its application to 
the modelling of a fed-batch bioreactor. 
 
Currently the research is aimed at extending 
Gaussian process approaches to mixtures of 
Gaussians (Shi, et al., 2003) to account for 
heterogeneity between batches. A useful aspect of 
Gaussian process mixtures is that they can 

dramatically reduce the computational cost by 
splitting the training data. Conventional mixtures are 
defined according to different batches. The extension 
to Gaussian process mixtures for data monitored 
across batches is also on-going. 
 
 

5. ACKNOWLEDGEMENTS 
 
X. Ou acknowledges the financial support from 
CPACT and Newcastle University, for her PhD. The 
authors would also like to thank Dr. Jianqing Shi for 
discussions relating to Gaussian processes. 
 
 

REFERENCES 
 
Brooks, S. (1998). Markov Chain Monte Carlo 

Method and Its Application, The Statistician, 47, 
pp. 69-100. 

Gelman, A., J.B. Carlin, H.S. Stern and D.B. Rubin 
(2000). Bayesian Data Analysis, Chapman & 
Hall/CRC. 

Neal, R.M. (1997). Monte Carlo Implementation of 
Gaussian Process Models for Bayesian 
Regression and Classification, Technical Report 
No. 9702, Dept. of Statistics, University of 
Toronto, available from http://www.cs.toronto. 
edu/~radford/publications.html. 

Nounou M.N., B.R. Bakshi, P.K. Goel and X.T. Shen 
(2002). Bayesian Principal Component Analysis, 
Journal of Chemometrics, 16, pp. 576-595. 

Kourti T. (2003). Multivariate Dynamic Data 
Modelling for Analysis and Statistical Process 
Control of Batch Processes, Start-ups and Grade 
Transitions, Journal of Chemometrics, 17, pp. 93-
109 

Park, S. and W.F. Ramirez (1988). Optimal 
Production of Secreted Protein Fed-Batch 
Reactors, A.I.Ch.E Journal, 39, pp. 1550-1558. 

Robert, C. and G. Casella (1999). Monte Carlo 
Statistical Methods, Springer, New York 

Rasmussen, C.E. (1996). Evaluation of Gaussian 
Process and Other Methods for Non-linear 
Regression, PhD Thesis, University of Toronto, 
available from http://www.cs.toronto.edu/0~carl/ 
gp.html. 

Shi, J.Q., R. Murray-Smith and D.M. Titterington 
(2003), Bayesian Regression and Classification 
Using Mixtures of Gaussian Processes, 
International Journal of Adaptive Control and 
Signal Processing, 17, pp.1-16. 

Tian, Y., J. Zhang and A.J. Morris (2002). Optimal 
Control of A Fed-Batch Bioreactor Based upon 
An Augmented Recurrent Neural Network Model,  
Neurocomputing, 48, pp.  919-936. 

West, M. and J.F. Harrison (1997). Bayesian 
Forecasting and Dynamic Models, Springer Series 
in Statistics, 2nd edition. 

Williams, C.K.I. and C.E. Rasmussen (1996). 
Gaussian processes for regression, Neural 
Information Processing Systems, 8, pp. 514-520. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



