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Abdract: The evduation of control performance by means of performance indices from
large amounts of measurement data is investigated. The focus is twofold: Firdly to assess
information tha can be deduced from many data sets and secondly to investigate the
usefulness of smple performance measures. Established methods and some useful new
idess are evaluated on many industrial data sets and the results are discussed.
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1 INTRODUCTION

The evauaion of control peformance mosly deds
with the computation of performance indices. These
indices range from very smple ones, eg. the control
aror mean and variance (eg. [Sdsbury, 1999]) up to
rather complex ones involving eg. subspace identifi-
cation [Bezergiami and Georgakis, 2000].

Obvioudy, smple indices are very gopeding since
for performance monitoring, typicdly many control
loops are assessed regularly.  Unfortunately, com-
pleity and information ae usudly corrdated such
that smple indices mostly imply simple answers.
One exception is the minmum-variance control
peformance index by Harris [Haris, 1989]. It
combines low computational effort with important
information about the current loop performance. This
fact contributed to its popularity over the last decade.

Traditiondly, control loop peformance assessment
deals with the kind of information that can be
deduced from the evauaion of a specific data set.
This approach is sound and vaid but caries some
pitfalls the data set may reflect unusual behaviour of
the control loop in queston. In the industrid
prectice, single daa baches ae often eroneous
since plant shut downs or other unusud events might
have been reflected in the data

Such data sts will in generd not be able to give a
far picture of the control loop performance. They
should idedly be excuded from performance
evduation; however, a mechanisn to automaticaly
discard dl such cases seems to be very difficult to
achieve

This paper atacks control performance assessment
from a dightly different point of view: Given the fact
that the time congtant of good contral is in the range
of months rather than days, it would make sense to

base a performance assessment on much more than
only afew data sets.

The firgt issue discussed in this paper is. can useful
informdion be found in simple control performance
indices when evauated on many data sets? Some
indices (both smple and more advanced ones) will
be evduated for 20 control loops from a pulp mill.
For each of the control loops more than 400 data
batcheswere analysed.

A scond aspect discussed is  the  continuous
callection of information that can be combined to
new knowledge about a control loop. The availability
of many data sets can be usad to build a nonlinesrity
map of the process Such information is of geat use
for tuning procedures.

The paper is organised as follows: In Section 2 the
data used in this study is described and presented.
Section 3  presents the evdudion of some
performance indices for al data sets and conclusons
thereof. Section 4 disasses the use of data in order
to build a knowledge database that grows with each
data set that was analysed.

Examples accompany both sections and the paper
concludes with a summary and requiraments for
indugtrid control performance monitoring tools.

2 INDUSTRIAL DATA SETS

This study makes intensive use of more than 400 data
sts containing control loop data from a sock
preparation section in a pulp mill. Each daa st
contains about 20 minutes of data a a sampling rete
of 1 second. The loop setpant (SP), the process
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A typicd data batch containing 20 control loops (11
flow loops, 3 level loops and 6 composition loops) is
shown in Figure 1
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Figurel: Example data (SP and PV respectively) for 20 loops from one data collection occasion. The signals
are scaled such that they have equal tandard deviation and are plotted on top of each other.

The data collection was done automatically, once per
day for more than ayear resulting in 424 data sets.

3 PERFORMANCE INDICES

Quite a number of performance measures for assess-
ing controller performance have been proposed in the
literature, especidly during the last decade. Mogt of
them targeted to be computed from norma operating
data only. It is the congraint of not alowing
experiments that outperforms the computation of
smilar peformance measures that are typicadly used
in cortroller design (eg. the loop overshoot or rise
time).

3.1 Simple gatistics

The term 'smple indices refers to indices that can be
evauated with a modest amount of computations and
that do not require any nonttriviad a priori know-
ledge Table 1 shows the smple peformance indices
that were evaluated in this study.

The control error mean should of course be centered
aound zero with no offst and a sufficiently small

dandard deviaion. Long or excessve deviation can
easily be identified (see loops no. 2, 12, 15 and 20 in
Figure 2

B Index 1 Description |
CE mean [%] mean of control error
CE std [%0] standard dev. of control err.
OP std [%] <. dev. of contraller output
CE skewness skewness of control error
CE kurtosis kurtosis of control error
«d ratio raio of std of control error
and controller output
maximum bic max. bicoherence
. corrdation  coefficient  bet-
corrdaion
- ween control  eror and
coefficient
controller output

Table 1: Smple performance indices that were
evaluated for all data sets. The units[ %] refer to the
operating ranges of OP and PV.

The (normdised) standard deviation of the control
aror can dso give condderdble indght into loop
behaviour, see Fgure 3. It can be cdearly seen that
loop No. 8 has a problem with increased variability
between logs no. 250 and 300. At this time, the loop
had a strong oscillatory behaviour.
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Figure2: Trend of loop standard deviation.
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Figure3: Sandard deviation of control error (loop
No. 8).

Another interesting detistics is the control error
skewness. Skew data often indicate problems of
nonlinear charecter. As an example see Fgure 4
where it can be seen that for many data sats, the
skewness is rather large, indicating regular problems
of nonlinear source. As a mater of fact, this loop
exhibits diction regularly resulting in the presented
non-symmetri ca data distribution.
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Figure4: Skewnesstrend of control error for loop
No. 2.

Condder another example in Fgure 5 where the
control error kurtosis for loop No. 12 is shown. For
Gaussan dgnds, the kurtoss should be centered

aound zero. In this case, it is clealy around —1
insead, indicating rather non-Gaussian signds. The
reason in this case is a dow periodic behaviour with
a cycle time of around one hour. The data batches are
too short for a detection dgorithm to detect this
ocillation.
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Figure5: Control error kurtosistrend for loop 12.

In FHgure 6, two trends of the ratio of the standard
deviations of control error and controller output are
shown
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Figure 6: Example for ratio of standard deviaions of
control error and controller output. Left: case with
not moving process output, loop No.6; Right:loop
with normal behaviour, loop No.5.

It can be seen that the vaue is 5 orders of magnitude
smdler in the left example than in the right one. The
reason is that the process variable in the left loop
(No. 6) does not move much more than the
quantisstion level, whereas the loop on the right (No.
5) moves reasonably much. In loop No. 6, ether the
sensor sgnd is corrupt or the loop actuator does
hardly move.

For a last example consder Figure 7 where the maxi -
mum bicoherence of the control error is plotted for
al loops. In [Choudhury et d., 2004] it is shown that
the bicoherence plot can be used to assess sdgnd
nonlinearity. Single evauations may tend to contra-
dict this hypothesis but when considering many data



s it turns out that such a measure may be able to
detect loops that exhibit nonlinearity problems (in
this case loops No. 1, 2, 5, 6, 9, 10 and 11). Thisisin
line with the knowledge about these loops.
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Figure7: Trend of maximumbicoherence over all
loops.

3.2 More advanced indices

Another group of indices involves more complex
computations and eventualy more prior knowledge.
As dready mentioned, the most prominent of these
indices is the Harris index that compares actud loop
variability to minimum-variance variability leading
to an index beween 0 and 1 where 1 equds
minimum-variance performance,
| = S r%]invar

2
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Figure8: Exanple of trendsfor the Harrisindex.

The example in Fgue 8 shows the need for
interpreting the Harris index with a grain of sat. The
left loop shows a good behaviour, however, for some
batches the index is very low. The right loop on the
other dde offers the complete range o index vaues,
indicating that the performance (or its assessment) is
vay different a different days. To rely on a few or a
sngle daa s&t only can be mideading when deding
with the Harrisindex.

Badly performing loops often exhibit oscillatory be-
haviour. Therefore, oscillation indices for oscillaion
detection and assessment are the most important
quantity that should be monitored. More and more
industriadl  applications dart focussng on periodic

Coninad loap nuamosr

disturbances in addition to the Harris index, which
was mostly discussed in the mid-90s.

Ogtillation detection can be done in vaious ways,
see [Hagglund, 1995], [Forsman and Statin, 1999] or
[Seborg and Miao, 1999).
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Figure 9 Oscillation index for all loops.

In FHgure 9, trends of the oscillation index [Forsman
and Statin, 1999] are plotted. It can easly be seen
that loops No. 1, 3, 4, 5, 8, 9, 10, and 11 exhibit regu-
lar oscillatory behaviour. The human eye recognises
an ogcillation when the index is larger than about 0.3.

3.3 Combination of indices

Performance indices provide a good means of
andysng plant behaviour. However, it is often the
combination of indices that gives dgnificant indght
into bad plant performance.

A vey compact assessment would be the test if
catan control  loops exhibit bad  behaviour
smultaneoudy. Hence, a corrdaion of a specific
index for different loops would be a vauable source
of information.
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Figure 10 Correation coefficients for osdllation
indices over all loops.



Condder FHgue 10 where oiillation indices are
corrdated for each loop. Such a plot indicates which
loops typicdly oscillate simultaneoudy. The plot
reveddls a common ocillatory behaviour between
loops no. 5, 7 and 17; se FHoure 11. Note that the
equaity of frequency is of no importance for the
correlation of the ostillation indices.
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Figwre 11  Three oillating signals  (with
normalised variance) as indicated by corrdation of
thelr oscillation indices.

4 INFORMATION FROM MANY DATA SETS

As mentioned in the introduction, the step beyond
doring indices for single data baches is to collect

and combine assessment information from single

evduations for future use Examples for such
goplicaions are:
= Creation of static input—output maps

Indication of data sets suitable for modd
identification

A datic input output map is often of importance
when control loop tuning is peformed. Many
commercid tuning tools offer ways to andyse exper-
imental data where the process input is changed step-
wise. The automdic generation of datic y-u-maps
can avoid codly experiments and thus enable faster
controller  tuning without disturbing current pro-
duction.

If the data within a data batch is sufficiently sta
tionary, then an dgorithm can extract dationary
vaues of OP and PV and dore them. Figure 12
shows examples of satic maps for al control loops
andysed. For loops where aufficiently many different
operating points have been found, a quadratic fun
ction has been fit to the data usng a less-squares
method.

For most daa sas a liner function would be
aufficient to describe the daic  input  output
rdationship well. Loops where the quadratic function
fits the map better are No. 1, 2 and 8. However, the
nonlinearity does not seem to be too severe, such that
it could aso be neglected.
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Figure12: Satic mapsfor all 20 control loops. Thefitted curveisquadratic. Vertical axisisthe controller

output and horizontal axisisthe processvariable.



It was mentioned that datic maps provide useful
indght into the process modd when dedling with
controller tuning. A naturd question is then: Could
the regular andyss of norma operaing data be used
to detect data sts that ae suiteble for modd
identification? This would be data sets where (a) the
setpoint is changed abruptly by a significant amount
or, (b) the loop is in manua mode and the operator
changes the process input stepwise. For both cases, a
regular andyss of data could raise and dore a flag if
suiteble identification datais available.

Since it may not be sufficient to flag for setpoint
changes (or input changes in manud loop mode)
only, it was chosen to use a flag that indicates if an
etimated dynamic modd for the process has
sufficiently good qudity. The qudity is measured by
goodness of fit tet as they are used in standard
system identification packages Fgure 13 shows an
example of a daa st that typicdly would flag for
being suitable for system identification.

183

Figure13: Data set suitable for mode identification
and contraller tuning.

Clearly, some loops would never generae these flags
since sgtpoints may never be changed or the loops
are never taken into manua mode. Note that distur-
bances done never qudify daa to be usefd for
process modd identification. In these cases, only the
controller can beidentified.

Using both static maps and the described mode fit
flags, it is hence possble — &t least for some loops —
to generate the information that is usudly required
for contraller tuning without being forced to perform
experiments.

Yet another flag that is useful to store for later use in
controller  tuning is whether the loop exhibited
diction behaviour [Horch, 1999]. Such information
should be available when tuning loops.

5 IMPLICATIONS FOR INDUSTRIAL TOOLS

From the above results, some implications for the
controller performance tools shdl be dated. A
practicaly useful tool should ...

m ... enadbleandyssof performanceindices
such as plot combinations, correlation, trend
plotsetc.;

m .. enable application-dependent selection
Jdiscarding of indices;

m . offer anindex database for search

queries,

... hepto retrieve data collection detes and

—if possible — specific datasets.

6 CONCLUSIONS

The ussfulness of performance indices for automatic
controller performance assessment is an accepted fact
in the process industry. A question that has received
little attention so far is which indices to use and what
kind of informetion can be deduced from esch of
them.

The focus in this paper was to show the strengths of
some Hected indices when a large amount of daa
batches is avalable From the andyses, some generd
conclusions shall be drawn:

m  Smple ddidics ae most useful for fast and
overview Hike scans of large amounts of data

B More advanced indices are very ussful when
averages over may daa sts ae avaldle
Single evduations may be mideading.

B Combinaion (eg. corrdation) of indices is
useful and givesinsight into the plant dynamics

m  Sorage of results for later usage is very hepful,
especialy for tuning (linearity, dtiction).

m  Trending of indices presents an extreme data and
information compresson for comfortable repor-

ting.
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