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Abstract: In continuous chemical processes, variations of process variables
usually travel along propagation paths in the direction of flow. The aim of this
study was to find a data-driven method for identifying the direction of variation
propagation using historical process data. Transfer entropy is a recently 
proposed method based on the probability density function (PDF) that measures
directionality of variation with respect to time. An industrial case study
illustrates the method which detects the influence of a temperature controller on 
downstream temperature measurements. A reversal of directionality was noted
during a disturbance and a physical explanation offered.
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1. INTRODUCTION

Plant-wide disturbances occur if a fault distributes
along a fault propagation path and affects several
process variables. The detection and diagnosis of
plant-wide disturbances is a major problem in the
process industry (Qin, 1998). It is therefore
important to understand the mechanism of 
propagation.

A description of the propagation mechanism in
causal qualitative models can identify the order of
occurrence of events and specify the paths of fault
propagation. Thus, the root cause of the disturbance
can be retraced along the propagation path.

This paper describes work in progress on a data-
driven method that serves as a basis for the automatic
construction of digraphs. The entropy related

measure of transfer entropy is chosen for determining
the direction of fault propagation and to answer
questions of

Directionality: Does a measurement X influence a 
second measurement Y more than measurement
Y influences X?
Consistency: Does the directionality change if a 
fault is present?

Digraph based models usually express the
relationship between faults and symptoms and define
the propagation paths by incorporating process
knowledge of experts (Nam et al., 1996). A 
drawback is that extracting expert knowledge is very
time consuming and the knowledge not always
available. If a mathematical representation of the
process exists then digraphs can be developed
systematically from differential and algebraic 



equations (Maurya et al., 2003a,b). However,
complete descriptions are rarely available for 
complex chemical processes and large plants.

An incorporation of the data-driven approach in a 
causal map consisting of digraphs was presented by
Chiang and Braatz (2003). They derive causal maps
from expert knowledge and from the measurements
affected by a fault. Broken dependencies along the
propagation paths are identified using data-driven,
entropy related measures. The direction of
propagation is not automatically detected but derived
from expert knowledge.

The contribution of the work reported in this paper
explores a measure for the directionality of variation
propagation in historical process data. The result can
then serve as a basis for qualitative model generation
in form of digraphs.

The next section explains the concept of transfer
entropy and its use for fault propagation. To illustrate
the concept of transfer entropy it is then applied to an 
industrial case study in Section 3. Results of
directionality and consistency detected by transfer
entropy are discussed.

2. DIRECTIONALITY ANALYSIS

Entropy related measures regard the measurement of 
a physical variable as the outcome of a random
process. Information contained in the outcome is
expressed by its probability density function (PDF).
Assuming that the process is ergodic over a defined
timeframe the PDF can be estimated by the relative
frequency. This is achieved by dividing the
amplitude axis into discrete amplitude bins and
assigning every sample data value to a bin
accordingly. The number of data points per bin
accumulates to the relative frequency.

Entropy measures the information, also referred to as
uncertainty or randomness, of a process by
logarithmical summing over all bins. When a fault is 
present the PDF and consequentially the entropy can 
change significantly (Chiang and Braatz, 2003). 
Thus, entropy can be used for detecting faults as it is
insensitive to outliers or temporary biases.

2.1 Transfer Entropy

A focus on PDF destroys the time trend of the
sequence. To show the significance of this problem,
two signals are considered: the first is a random
signal whose amplitude is uniformly distributed
between -1 and +1, the second a triangular wave
oscillating regularly between -1 and +1. The PDFs of 
these two signals are identical yet they are obviously

Fig. 1. Time samples involved in the computation of
the transfer entropy, general case (a) and special
case for k=l=1 with time delay nd (b).

not the same signal. Thus, PDF and entropy cannot
capture time dependency.

Transfer entropy has been recently proposed by
Schreiber (2000) to measure dependency in time and 
thus which of two variables causes the other. As an
example, the dependency between heart and breath
rate was investigated, finding that the heart rate 
influences the breath rate rather than vice versa. 
Transfer entropy relates k previous samples of 
variable X and l previous samples of variable Y to 
predict the next value of X and thus incorporates the
time dependency. This relationship is illustrated in 
Figure 1(a). Transfer entropy is then calculated by
summing the joint and conditional PDF of two time
sequences logarithmically:
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where the sums are over all amplitude bins. The joint
PDF p(xi+1,xi

k,yi
l) is the probability that the

combination of xi+1, xi
k and yi

l have particular values.
The conditional PDF p(xi+1|xi

k,yi
l) is the probability

that xi+1 has a particular value when the value of
previous samples xi

k and yi
l are known.

The index Y X indicates that the influence of
sequence Y on sequence X is measured. The reverse
dependency X Y is calculated by exchanging x and
y of the joint and conditional PDFs. To specify
whether X influences Y more than Y influences X a 
measure for the directionality is introduced:

},min{/)( XYYXXYYXYX TTTTt . (2)

If tX Y is greater than zero then X influences Y.
Scaling the difference by the minimum of both
values provides a standardized index.
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2.2 Time Delays

Transfer entropy uses the presence of time delays to 
identify which variable influences the other. In 
continuous processes time delays occur as the 
product streams along the propagation path. Thus,
disturbances and variations can be observed with a
time delay at two sequential measuring points. In
most cases, the time delay of the stream is unknown
and varies with throughput over time. This issue has
to be considered when adjusting the parameters for 
the transfer entropy.

The distance nd between two consecutive samples, as
shown in Figure 1(b) for k=l=1, is an important
parameter which captures the time delay td. The
transfer entropy and also tX Y become a function of 
nd. Eq. 1 reveals that no symmetry with respect to nd
holds but it can be noted that TX Y (nd) = TY X (-nd).

Ideally, the parameter nd should equal the actual time
delay td. Since td is usually not known, a weighted
sum of the directionality measure tXY for a number of
N of values of nd can be introduced:

N

n
dYX

d
YX

d

nt
n

Nt
1

)(1)(' . (3)

The number of samples N has to be sufficiently large
to ensure that the time delay td is captured. The
directionality for nd = td should be much larger than
the average value for the directionality the sum in
Eq. 3 therefore will be dominated by the nd = td term
and will capture the dependency. The factor 1/nd
originates from the assumption that small time delays
are generally more relevant than large time delays.

This intuitive assumption is based on the principle of
Markov processes.

2.3 Challenges

A drawback of transfer entropy is that it depends
strongly on the bin size of the PDF. A large number
of time samples are required to find a suitable
representation of the PDF with a sufficient large
number S of amplitude bins. Additionally, the
number of bins increases exponentially with larger k
and l as the total number of the combination of bins
is Stot=Sk+1·Sl.

The obstacle of poor resolution or too large bin size
of the PDF can be overcome by using more
sophisticated estimation than binning. Fewer time
samples are needed to estimate the PDF when using
Kernel functions (Silverman, 1986) which are
centred around the sample points and thus
accumulate to the PDF. Alternatively, a uniform or 
linear distribution can be assumed and approximated
by integrating over each bin (Hukkanen and Braatz,
2003). As this research is still ongoing, Kernel
functions will be implemented in a next step.

3. THE INDUSTRIAL PROCESS

The process schematic of the industrial case study is 
shown in Figure 2. The process is the solvent recycle
path in a gas purification system. Measurements of
the temperature are taken at seven points along the
recycle stream. The level of the liquid at the bottom
of both distillation columns and the differential
pressure within are also captured.

Fig. 2. Process schematic of the industrial case study with process variable indicators
and controllers for temperature (T), level (L) and differential pressure (DP).
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Fig. 3. Time trends of process variables.

The purpose of applying transfer entropy to case 
study is to provide a measure for the direction of
propagation and to identify directionalities that
change during the presence of a disturbance.

3.1 The Data Set

The full data set consists of 1000 samples taken at
the twelve measurement points at a sample rate of 
once per minute. Figure 3 shows the mean centred
and normalized time trend of the process variables.
From visual inspection an oscillatory disturbance can
be identified from sample 600 to 840. The identical

period of oscillation and the coinciding start and
ending of the disturbance for all measurements
suggest a plant-wide disturbance that affects more or
less all process variables.

3.2 Direction of Propagation

Five sequential temperature measurements are 
investigated for applying the directionality measure:
indicator TI5 next to the recycle heat exchanger, the
process variable of controller TC1, two indicators at
distillation column 1 (TI6 and TI7), and the
measurement at the exit of column 1, TI1.
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Fig. 4. Close up of temperature measurements.



Fig. 5. Directionality t’X Y for sequential
temperature measurements of the industrial
process (k=2, l=1).

A close-up of the time trends of these measurements
is shown in Figure 4. Distinct features can be
observed which occur with a time delay in all
variables. A large peak just before 200 minutes
provides an example. It occurs first in TC1 and
moves to TI6, TI7 and TI1. A requirement for the
new transfer entropy method is that it should match
this visual observation.

Transfer entropy was able to measure the
directionality of sequential variables. The variables
and the direction represented by arcs are shown in 
Figure 5. The values assigned with the arcs are
values for the directionality measure t’X Y (K=5).
Large values indicate a strong directionality.

As expected, the two temperature indicators at
column 1 are strongly dependent (t’TI6 TI7 = 0.558)
and TI6 influences TI7. As a result, TI7 is
approximately influenced by TC1 as much as TI6.
However, the directionality between TC1 and TI1 is
almost zero (t’TC1 TI1 = 0.006), while TI7 influences
TI1 distinctively (t’TI7 TI1 = 0.137). The
directionality measure proves to give a representation
of the actual dependencies in the process because it 
follows the direction of material flow. In particular,
Figure 5 shows an influence of TC1 on TI7 as much
as on TI6. This means that the structure is correctly
represented even if the measurement of TI6 is not
available. It can be concluded correctly that TC1
influences all temperature measurements in the
column.

3.3 Consistency of Propagation

Consistency is a second issue to be solved by transfer
entropy since the direction of signature propagation
might change when a disturbance is present. Transfer
entropy showed that during normal operation,
differential pressure DP1 influences level LC1 while
during the disturbance LC1 influences DP1. Physical
experiments suggest that the disturbance is caused by
foaming in column 1. If that is so then a possible
explanation for the observed change in directionality
is as follows.

During normal operation (up to 600 min in Figure 3),
any pressure increase also increases the liquid hold-
up in the column and decreases the flow rate of the
liquid. Thus, the level of liquid fluctuates. It is
known that foaming affects the level measurement on 
this column. This in turn will cause LC1 to move the
output and this will alter both the liquid flow and
liquid hold-up because of the resulting movement of 
the control valve. The changes in hold-up and flow
rates will in turn cause the differential pressure to
change.

Figure 6 shows transfer entropy TLC1 DP1 and 
TDP1 LC1 over a number of values for the time delay
nd. The directionality measure t’ is the weighted sum
over all time delays such that during normal
operation t’DP1 LC1 = 0.805 and during the
disturbance t’LC1 DP1 = 0.850. In the upper plot,
representing the undisturbed period, DP1 influences
LC1. In the lower plot, representing the period when
the disturbance is present, LC1 influences DP1. This
result suggests that transfer entropy can capture
consistency in fault propagation by finding
directionality changes when a fault is present.

4. CONCLUSIONS

The concept of transfer entropy (Schreiber, 2000) has
been proposed for finding the direction of flow
during normal operation and to identify changes
when a fault is present.
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Fig. 6. Transfer entropy of level (LC1) and differential
pressure (DP1) during normal operation (upper
plot) and when a disturbance is present (lower
plot).
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The measure gives a basis for creation of digraph
models using process data rather than expert
knowledge. In an industrial case study, the direction
of variables was identified from the process data and
an inverse direction was detected during a period of
disturbance. The directionality measure is showing
exciting results even though the unknown time lag
can only be approximated and not exactly captured.
It appears to be robust within bounds; however, the
next step is to optimize the parameters for the
number of time delays N and the number of samples
of joint and conditional probability.

ACKNOWLEDGEMENTS

The principal author gratefully acknowledges the
financial support of the University College London
Graduate School. The UCL authors appreciate the
support of BP Chemicals, Hull.

REFERENCES

Chiang, L.H. and Braatz, R.D. (2003). Process monitoring
using causal map and multivariate statistics: fault

detection and identification. Chemometrics and
Intelligent Laboratory Systems, 65, 159-178.

Hukkanen, E. J. and Braatz, R.D. (2003). Measurement of
particle size distribution in suspension polymerization
using in situ laser backscattering. Sensors and
Actuators B: Chemical, 96, 451-459.

Maurya, M.R., Rengaswamy, R. and Venkatasubramanian,
V., 2003. A systematic framework for the development
and analysis of signed digraphs for chemical processes. 
1. Algorithms and analysis. Industrial and Engineering
Chemical Research, 42, 4789-4810.

Maurya, M.R., Rengaswamy, R. and Venkatasubramanian,
V., 2003. A systematic framework for the development
and analysis of signed digraphs for chemical processes. 
2. Control loops and flowsheet analysis. Industrial and 
Engineering Chemical Research, 42, 4811-4827.

Nam, D.S., Han, C., Jeong, C.W. and Yoon, E.S. (1996).
Automatic construction of extended symptom-fault
associations from the signed digraph. Computers and 
Chemical Engineering, 20, S605-S610. 

Qin, S.J. (1998). Control performance monitoring – a 
review and assessment. Computers and Chemical
Engineering, 23, 173-186. 

Schreiber, T. (2000). Measuring information transfer. 
Physical Review Letters, 85, 461-464.

Silverman, B.W. (1986). Density estimation for statistics
and data analysis. Chapman & Hall, London.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



