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Abstract: The correlation dimension and maximal Lyapunov exponent have a direct 
relationship with the harmonic complexity contained in non-linearity induced oscillations 
in chemical process plants. When combined with knowledge of the harmonic propagation 
of plant-wide oscillations, they can be applied to locate the source of the non-linearity. 
The method is demonstrated on both simulated data and real industrial data. 
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1. INTRODUCTION 
 
Oscillations are a common type of plant-wide 
disturbance whose detection and diagnosis have 
generated considerable interest in recent years 
(Thornhill, et al., 2001; Thornhill, et al., 2003a; 
Thornhill and Hagglund 1997; Xia, et al., 2003). A 
key issue is the determination of the root cause of a 
plant-wide oscillation (Qin 1998). That is an 
oscillation that is observed in a number of 
neighbouring process units and control loops.  The 
most likely sources of oscillations are either due to 
valve non-linearity such as stiction or hysteresis or 
due to a badly tuned controller (Wallen 1997). 
Thornhill, et al., (2001) have focused on isolating a 
problem non-linear element in a control loop; the 
most likely loop is selected by finding that 
measurement record that has the maximum distortion 
factor (D- factor), which is a measure of the 
harmonic content of a record. In the same paper and 
in (Thornhill, et al., 2003b), the authors focus on an 
alternative measure, on what they call non-linearity. 
They recommend the application of a non-linearity 
statistic (the N measure), and hypothesize that the 
non-linearity in a measurement record obtained near 
the source will be stronger than one that it is recorded 
further away from the source. Both methods are 
based on the fact that process plants are usually ‘low-

pass’ in nature, so filter out high frequency 
components in the oscillations.  
 
In this paper, the correlation dimension and 
Lyapunov exponents are found to have some 
relationship with the harmonic content in the time 
series recorded from the oscillating loops. 
Nonlinearity induced oscillations in chemical process 
plants usually have asymmetric waves which contain 
a fundamental, plus even and odd harmonics (Zang 
and Howell, 2003). Hence correlation dimension and 
Lyapunov exponents can provide additional 
information towards the location of the source of 
nonlinearity induced, plant-wide oscillations.  
 
The correlation dimension and Lyapunov exponents 
are recently developed descriptions which provide 
quantities for the characterisation of nonlinear, 
deterministic and chaotic data (Kantz and Schreiber 
1997). These methods have been widely used to 
analyse non-linear time series in mechanical systems 
(Wang and Lin 2003), in medical science (Muller, et 
al., 2003), and in chemical engineering (Guo, et al., 
2003). Sometimes the correlation dimension and/or 
the maximal Lyapunov exponent indicate non-linear 
or deterministic chaotic behaviour; whilst other 
references conclude that a larger correlation 
dimension or a larger maximal Lyapunov exponent 



corresponds to richer dynamics (Boltezar, et al., 
1999) or more system complexity (Burioka, et al., 
2001). Few have related the correlation dimension 
and maximal Lyapunov exponent of a time series to 
its harmonic content because chaotic time series, 
although usually periodic and oscillatory, do not 
contain distinct fundamentals and harmonics.  
 
The definitions and characteristics of the correlation 
dimension and maximal Lyapunov exponent will be 
introduced first. A simple example will then be 
described to demonstrate their relationships with the 
harmonic content of an oscillating time series. A 
method of applying these measures to find the root 
cause of the oscillation will then be given.  Finally 
three case studies will be outlined, one is simulated 
and two industrial.  
 
 

2. TECHNIQUES 
 
Both techniques are based on a discrete, multi-
dimensional phase space representation of the data. 
Given the time series 1 2 3, , , , Nx x x x  then the multi-
dimensional phase space is formed from: 
 

      2 ( 1)( , , , ), 1,2, ,i i i T i T i m Tx x x x i N+ + + −= =X        (1) 

where T is the time interval and m is known as the 
embedding dimension;  is called an embedding 
vector (point) of m-dimension. 

iX

 
 
2.1 Correlation dimension: definition and estimation 
 
The correlation dimension provides a tool to quantify 
self-similarity. A larger correlation dimension 
corresponds to a larger degree of complexity and less 
self-similarity. Stochastic signals are infinite-
dimensional. The most frequently used procedure to 
estimate the correlation dimension was introduced by 
Grassberger and Procaccia (1983a, 1983b). They 
defined the correlation sum for a collection of points 

(i=1,2,…,N) in some phase space to be the 
fraction of all possible pairs of points which are 
closer than a given distance ε in a particular norm: 
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where Θ is the Heaviside step function, ( ) 0xΘ =  if 
and  for . Thus Equation 2 

counts the pairs ( ,
0x ≤ ( ) 1xΘ = 0x >

iX jX ) whose distance is smaller 
than ε. To eliminate the temporal correlation, the 
Theiler window can be used to exclude those pairs of 
points that are too close in time (Kantz and Schreiber 
1997). 
 
It has been shown by Sauer & Yorke (1993) that in 
the limit of an infinite amount of data (i.e. N ) 

and for small ε, C scales like a power law, 

→∞

2( ) DC ε ε∝ , where D2 is known as the correlation 
dimension.  Thus D2 is defined by 
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Convergence to a finite correlation dimension can be 
checked by plotting “effective dimensions” versus 
scale (ε) for various embeddings (m). The easiest 
way to proceed is to compute (numerically) the 
derivative of ln ( , )C m ε  with respect to ln ε , for 
example by fitting straight lines to the log-log plot of 

( )C ε . If the scale is large, then self-similarity should 
be minimal, whereas if it is sufficiently small one 
observes a relationship with the embedding 
dimension i.e. D2 is not totally independent. This 
effect is due to noise. Only on the intermediate scales 
can one see the desired plateau where the results are 
approximately independent of m and ε i.e. where D2 
is invariant. The region where the scale rule holds, 
not just the range selected for straight line fitting, is 
called the scaling range. Takens-Theiler have 
developed an alternative estimate of the correlation 
dimension:  
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2.2 Lyapunov exponents: definition and estimation 
 
Lyapunov exponents measure the exponential 
divergence (positive exponents: chaotic motion) or 
convergence (negative exponents: regular motion) of 
two initially neighbouring trajectories in a phase 
space. In other words, they measure the degree of 
unpredictability of the future. There are many 
different Lyapunov exponents for a dynamical 
system. The most important is known as the maximal 
Lyapunov exponent ( 1λ ) (Kantz and Schreiber 1997). 
Let  and iX jX  be two points in a phase space with a 

distance 0 1i j δ− =X X
 
between them. Let tδ  

denote the distance obtained between the two 
trajectories t units of time later i.e. t i t jδ + += −X X t . 

Then 1λ  is defined by . A positive 
1

0 ,t
t teλδ δ δ 1

1λ  means that there is an exponential divergence of 
these trajectories, i.e. chaos; a negative 1λ  implies 
the existence of a stable fixed point; if the motion 
settles down onto a limit cycle, 1λ is zero.  
 
Based on this understanding, a robust, consistent and 
unbiased estimator for the maximal Lyapunov 
exponent was proposed by Kantz and Schreiber 
(1997). They compute  
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where  the reference points are embedding vectors 
and U(X

iX

i) is known as the neighbourhood of  with 
diameter ε. If

iX
( , , )S m tε exhibits a linear increase with 

fixed slope for all m larger than some m0 and for a 
reasonable range of ε, then the slope of S is deemed 
to be invariant over this range. This slope can be 
taken as an estimate of the maximal exponent 1λ .  
 
The correlation sum, correlation dimension, and the 
maximal Lyapunov exponent estimation in this paper 
are all based on the TISEAN software package 
(Hegger, et al., 1999). Throughout the paper, ( )TTD ε  
and ( , , )S m tε are formed in 1-15 dimensions, D2 
and 1λ are then estimated from the values of 

 and slopes of( ) 'TTD ε s ( , , ) 'S m t sε  in 2-15 
dimensions where the plateau or linear increase is 
well established, giving the mean and variance of 
these values. 
 
 
2.3 Relationship between these invariants and 
harmonic content 
 
Intuitively, a time series with high harmonic content 
will be more complex and unpredictable than one 
with a low harmonic content, and hence will have a 
larger correlation dimension and a larger maximal 
Lyapunov exponent. Here a simple example will be 
used to reinforce this intuition. Three 4096-sample 
time series were analysed to examine the effect of 
increasing the harmonic content: 
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where f=0.01 is the fundamental frequency. The 
correlation dimensions and maximal Lyapunov 
exponents of the three time series are listed in Table 
1. 
 
It can be seen that the correlation dimension and 
maximal Lyapunov exponent both increase with 
harmonic content. This supports the claims that the 
correlation dimension reflects the self-similarity and 
the maximal Lyapunov exponent reflects the 
predictability. The future of time series with more 
harmonics should be more unpredictable and hence 
should have a larger invariant. 
 

Table 1. Invariant of sinusoidal signals 
 

Time 
series 

Correlation 
dimension (D2) 

Maximal 
Lyapunov 

Exponent ( 1λ ) 
s1(k) 1.04≤0.04 2.21e-5≤1.44e-5 
s2(k) 1.07≤0.04 2.10e-4≤2.36e-5 
s3(k) 1.08≤0.03 8.12e-4≤2.11e-4 

2.4 Invariant based location of the source of the 
oscillations  
 
In general the dynamic behaviour of physical 
processes are inherently low-pass, so time series that 
are recorded close to the root cause of a plant-wide 
oscillation will have a high harmonic content, and 
those recorded further away from the root cause will 
become more sinusoidal. However the first few 
harmonics of an oscillation could be amplified if the 
fundamental is sufficiently low to locate the first few 
harmonics on the positive slope of the disturbance 
transfer function bode plot. In this case, and since the 
first few harmonics dominate, the time records 
further away from the source could be more complex 
(with large signal-to-noise ratio).  
 
Based on this understanding of how harmonic 
content is affected as an oscillation propagates 
through a plant, the correlation dimension and 
maximal Lyapunov exponent can provide features to 
locate the source of plant-wide oscillations. More 
specifically, the time series pertaining to the root 
cause should have the largest correlation dimension 
and maximal Lyapunov exponent in cases where the 
plant is inherently low pass in nature over the 
frequency range of concern, because the harmonics 
have been attenuated through the propagation and 
also because the time series become less complex 
and more predictable further away from the source; 
and the correlation dimension and maximal 
Lyapunov exponent pertaining to the root cause will 
be the smallest in low-frequency cases where there is 
amplification of the first few harmonics. 
 
 

3. EXAMPLES 
 
3.1 Simulated time series 
 
A simulated time series was generated by simulating 
a simple distillation column model due to Seborg, et 
al., (1989), which was adapted by incorporating a 
valve model into one of its loops. Details pertaining 
to the revised model are given in Fig. 1; stiction in 
the valve (in Loop 1) was increased until the model 
oscillated. The static friction model that was used is 
that due to Horch and Isaksson (1998). Both loops 
oscillated. Their controlled process variables (PVs) 
were recorded, resulting in two 4096-sample time 
series (Fig. 2). The correlation dimension plots, DTT 
versus ε, and the plots of ( , , )S m tε versus t are given 
in Fig. 3 and Fig. 4 respectively.   
 
This is a low-frequency case, because the 
fundamental oscillating frequency is much lower 
than the cut-off frequency of the disturbance transfer 
function bode plot of Loop2. So the correlation 
dimension and maximal Lyapunov exponent of the 
source should be smaller than the disturbed loop. The 
results obtained (Table 2) support this view. 



 
 

Fig. 1 The simulated plant schematic 
 

 
Fig. 2 Process variable time series for the two 

simulated loops 
 

 
Fig. 3 Takens estimator for correlation dimension of 

the two loops 
 
Table 2. Invariant estimation for the simulated case 

 
Loop Number Correlation 

Dimension (D2) 
Maximal 
Lyapunov 

exponent ( 1λ ) 
1 3.00±0.13 0.30±0.01 
2 3.28±0.13 0.31±0.01 

 
Fig. 4 Maximal Lyapunov exponents of the two loops 
 
 
3.2 Case study 1 (low-frequency case) 
 
Case study 1 pertains to industrial data, provided by 
the Eastman Chemical Company, which was 
recorded whilst a plant was oscillating.  A plant 
assessment found a sticking valve in the loop with 
Tag22 (Thornhill, et al., 2002; Xia, et al., 2003). 
Figure 5 gives the 4096-sample time series for each 
of the six dominant loops that showed these plant-
wide oscillations. The correlation dimensions and 
maximal Lyapunov exponents of each time series are 
plotted and estimated. The results are listed in Table 
3.  

 
Fig. 5 Time series plots of the six loops of interest 
 

Table 3. Invariant estimation for Easterman case 
study 

 
Tag Number Correlation 

Dimension 
(D2) 

Maximal Lyapunov 
exponent ( 1λ ) 

22 1.52±0.03 0.004±0.0001 
13 2.33±0.01 0.022±0.004 
23 - - 
5 - - 

25 3.86±0.01 0.029±0.007 
19 2.29±0.05 0.007±0.0004 



 
 Fig. 6 (a) No typical correlation dimension found in 

Tag5 
 

 
Fig. 6 (b) No exponential divergence of Tag5 
 
Once again, this is a low-frequency case study. 
Tag22 has the smallest correlation dimension and 
maximal Lyapunov exponent inferring that it should 
be the nearest to the root cause. Interestingly Fig. 6 
(a) shows the correlation dimension plot of Tag5, 
where no typical correlation dimensions can be 
found. All curves from different embedding 
dimensions behave different and there is no common 
behaviour. Fig. 6 (b) shows that the time series 
pertaining to Tag5 exhibit no linear increase, 
reflecting the lack of exponential divergence of 
nearby trajectories. And the time series pertaining to 
Tag23 also has no typical dimension and maximal 
Lypunov exponent. A possible explanation for this is 
that the stochastic content (for example, noise) in the 
time series dominates. These observations also match 
the propagation schematic provided by (Thornhill, et 
al., 2002), where Tag23 and Tag5 are both relatively 
far away from Tag22. Although Tag19 is farther 
away than Tag13, it has a smaller correlation 
dimension and maximal Lyapunov exponent. This is 
because the intrinsic low-pass filtering attenuates the 
higher harmonics and simplifies the time series 
pertaining to Tag19. 
 
 
3.3 Case Study 2 (high-frequency case) 
 
A set of refinery data (courtesy of a SE Asian 
refinery) was examined. Previously Thornhill, et al., 
(2001) have performed spectral PCA on the data and 
suggested that 12 loops were associated with a plant-
wide oscillation observed in the data. They then 
determined the distortion factor and N- measure of 

each of these 12 loops and concluded that the source 
of non-linearity was located in the loop associated 
with one of Tags 13, 33 or 34. Figure 7 shows the 
time trends of the 12 loops. The estimated correlation 
dimensions and maximal Lyapunov exponents for the 
12 loops are listed in Table 4. 
 
This is a high-frequency case study. The source of 
such plant-wide oscillations should have the largest 
correlation dimension and maximal Lyapunov 
exponent. From Table 4, it can be seen that the time 
series pertaining to Tag13 and Tag33 have larger 
correlation dimensions and maximal Lyapunov 
exponents than those pertaining to other loops, which 
agrees with the conclusions made by Thornhill, et 
al., (2001). Note that the time series pertaining to 
Tag11 also has a large correlation dimension and 
maximal Lyapunov exponent. It is suspected that this 
loop contained harmonics which were not multiples 
of the fundamental pertaining to the oscillation (0.06 
min-1). These harmonics may contribute to the large 
correlation dimension and maximal Lyapunov 
exponent. Note that the time series pertaining to Tags 
24, 25, 4 and 19 have no typical correlation 
dimensions and maximal Lyapunov exponents, 
because these loops are contaminated by noise.  
 

 
Fig. 7 Time series plots of the twelve loops of 

interest 
 
Table 4. Invariant estimation for SE Asian case study 
 

Tag Number Correlation 
Dimension 

(D2) 

Maximal Lyapunov 
exponent ( 1λ ) 

34 1.24±0.01 0.011±0.0003 
13 2.78±0.06 0.057±0.0008 
33 2.16±0.12 0.030±0.004 
2 1.88±0.08 0.010±0.0002 

10 1.79±0.10 0.011±0.001 
11 2.87±0.04 0.027±0.0007 
20 1.87±0.05 0.019±0.001 
24 - - 
3 2.05±0.02 0.029±0.001 

25 - - 
4 - - 

19 - - 
 

 
 



4. CONCLUSION 
 
The correlation dimension and maximal Lyapunov 
exponent of a time series are demonstrated to be 
associated with its harmonic content. Based on the 
assessment of the propagation of harmonic content of 
plant-wide oscillations, it is possible to find the 
source of non-linearity by analysing invariants of the 
time series pertaining to the oscillating loops. 
Compared to the N-measure proposed by Thornhill, 
et al., (2001), these methods do not involve surrogate 
data, and are hence more time efficient.  
 
Second-order Volterra models that are capable of 
exhibiting asymmetric responses to symmetric input 
changes (Doyle et al., 1995) might provide additional 
information. 
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