
AN EXCHANGE LANGUAGE FOR PROCESS
MODELLING AND MODEL MANAGEMENT

Huaizhong Li C. Peng Lam

School of Computer and Information Science
Edith Cowan University, Perth, WA 6050, Australia

email: {h.li,c.lam@ecu.edu.au}

Abstract: Many development tools and environments have been used in process
design to develop models and to perform simulations for processes. These de-
velopment tools and environments generally use proprietary format to represent
the developed models. Frequently, a model developed using a particular tool can
not be used in another without tedious modifications. It is also common in process
design that the developed models are not systematically managed, hence it is often
impossible to reuse an existing model due to difficulties to retrieve knowledge and
design artifacts relevant to the model. These problems greatly limit the exchange
of the available resources in process design. In this paper, we propose an exchange
language for process modeling and model management to promote interoperability
of the process models and to enable systematic management of the process models.

Keywords: Process modeling, model management, reuse, XML, data model

1. INTRODUCTION

Modeling and model-based simulation have been
extensively used across all development phases
of the industrial processes. Process modeling is
a critical and enabling technology that conveys
knowledge from research to the industry (Krieger,
1995).

Mathematical models are essential for process de-
velopment, design and operation. Mathematical
modeling is characterized by a number of experts
using different modeling and simulation environ-
ments to build models for varying purposes in pro-
cess design (Foss et al., 1998). Many commercial
and research modeling and simulation environ-
ments, for examples, gPROMS, Aspen+, Matlab,
Model.LA (Bieszczad, 2000), ModKit (Bogusch et
al., 2001) and ModDev (Jensen and Gani, 1999),
are widely used in both research society and in-
dustry to develop models for processes and alter-
natively to perform process simulations.

It is well-known that heterogeneous modeling and
simulation tools for process modeling exclusively
use proprietary formats to represent process mod-
els. These modeling and simulation tools are in-
compatible in general, therefore, the models de-
veloped using these tools are not inter-operable.
Unfortunately, it is a common practice in process
design to employ different tools for different pur-
poses. For example, Aspen+ is commonly used for
steady state simulation, gPROMS has advantage
in dynamic simulation, while Matlab is perhaps
the most used tool for control design and opti-
mization. Thus, additional efforts may have to
be devoted to convert a model developed in a
tool into a format which is usable in another tool
(Schopfer et al., 2000). Therefore, it is advanta-
geous that a tool-independent modeling represen-
tation can be developed to facilitate information
exchange between the heterogeneous tools.

Model reuse refers to the practice that uses avail-
able design artifacts, such as model knowledge and



tool specific implementations, in the development
and maintenance of a process. Obviously, model
reuse across different modeling and simulation
tools can save time and resource for the process
design. However, model reuse in the process design
life cycle is also difficult. Due to the proprietary
formats used to represent the models in the de-
velopment tools, current model reuse practice is
largely confined to within the same development
tool only. Furthermore, besides the incompatibil-
ity of the modeling and simulation tools which
hiders the reusability of the models, currently
there is no well-established standard to develop
process models. Hence individual engineers and
organizations may develop and maintain models
in their own ways which may be cryptical to
others. A neutral exchange language for process
modeling may help standardizing the model de-
velopment procedure.

In the development life cycle for process design,
model knowledge is frequently lost due to im-
proper documentation or lack of systematic man-
agement mechanism. It is common that directories
in a file system are adopted to serve the purpose
of distinguishing different versions in the evolution
of the process models. Existing models are either
hard to be found, or hard to be used because
of insufficient documentation for the models. As
a result, repeated modeling is common in pro-
cess research and industry (Schopfer et al., 2000).
From the authors’ experience, a systematic model
management strategy is helpful in model reuse for
process modeling.

Model integration consists of vertical and hori-
zontal integrations. Vertical integration means the
integration of the models of comparable granular-
ity but different functionality to form a complete
process, while horizontal integration implies the
integration of sub-models into a model to expand
the functionality of the model. Model integration
heavily involves model reuse in different ways.
Model can be reused either a-priori where the
reusable models are designed and implemented
with specific consideration for integration, or a-
posteriori where the models are reused and inte-
grated almost arbitrarily (Marquardt et al., 2000).

It is clear that there are two key issues related to
model reuse and model integration:

Model Management Process models have to
be managed in a systematic ways to promote
reuse and evolution in the process development
life cycle

Model Interoperability Process models have
to be inter-operable for model reuse and in-
tegration between different development envi-
ronments. This is especially important for a-
posteriori model integration

One of the best known notions for reuse is ‘design
once, use many times’. A centralized model repos-
itory certainly reduces the risk of repeated design
of the same model. A centralized model reposi-
tory also eases the task of model management.
These considerations clearly call for a framework
for process modeling which has a centralized data
management system, the associated external con-
verters and integrators, and the model exporters.
Such framework can act as an integrated part for
a heterogeneous modeling and simulation envi-
ronment to provide interoperability to the other
heterogeneous modeling and simulation environ-
ments, and to offer the benefits of reusing dif-
ferent versions of the proprietary artifacts from
the other heterogeneous modeling and simulation
environments.

In the following, we present an exchange language
for process modeling and model management. The
exchange is defined by a XML schema.

2. AN EXCHANGE LANGUAGE FOR
PROCESS MODELING AND MODEL

MANAGEMENT

As discussed in the previous section, A central-
ized modeling framework can reduce the risk of
repeated design of the same model and ease the
task of model management. Hence, we propose a
centralized framework for process modeling and
model management. The conceptual architecture
of the framework is illustrated in Fig. 1. The
framework is currently under development, it has
the following functionalities:

• A data exchange server to interact with the
various modeling and simulation environ-
ments. The data exchange server accepts pro-
prietary models derived from a modeling and
simulation source tool, and exports client-
specific models to a particular target tool

• An array of converters and integrators to
convert the received proprietary models into
a neutral exchange format used in the frame-
work, and an array of exporters to trans-
form the models in the exchange format into
the proprietary formats which can readily be
used in the client tools

• A modeling and management unit which is
the core of the framework. This unit performs
the following functions:

· Manage model repositories to store and
to retrieve the transformed models from
the converters and integrators

· Provide an on-line modeling tool as a
virtual development environment for au-
thenticated engineers to model processes
and to store the derived models in the
repositories



Fig. 1. Conceptual Process Modelling and Model Management Architecture

· Provide model management to the mod-
eling artifacts.

To promote model interoperability and to enable
model management, it is advantageous that the
models used inside the proposed framework are
represented using a neutral exchange language.
One of the prominent possibilities for a neutral
exchange language is XML. As stated by Wedel
(Wedel, 2002), XML has great advantages to
represent process models which can be easily
represented using the XML flexible meta model.
Many existing tools can be used and integrated in
the process development environments to process
XML data. XML representation of the models also
enables systematic model management. Models
represented in XML format can be managed and
validated using a corresponding XML schema for
process modeling.

In the following, we present an exchange language
for process modeling and model management. The
proposed exchange language is one of the key
elements for the modeling and management unit.

We have developed a XML schema to define an ex-
change language for representation of the process
models. As illustrated in Fig. 2, a process model
(we call it ‘process’ in the schema) comprises three
parts, namely, the model parts (‘model’) used to
integrate the process, the connections between the
models, and the elementary version control mech-
anism for the process. Due to space limitation, we
only present the coarse skeleton of the exchange
language in this paper. The actual schema, the
relevant documentation, and some sample process
XML instances can be obtained from the authors.

Connections between models refer to the coupling
between the input ports and the output ports
of the relevant models. As shown in Fig. 3, a
connection has a source connectFrom from an
output port of a model, and a target connectTo
to an input port of a model. The nature of the
connection is defined by link which contains a list

Fig. 2. Process Structure

Fig. 3. Connection Structure

of the allowable connection types, for example, a
link can be stream or liquid for chemical processes.

A process consists of one or more integrated
model parts, referred to as horizontal model in-
tegration in the previous section. For example,
a reaction/separation chemical process in (Lee
et al., 2000) is made up of two systems namely
a reactor system and a separation system, the
reactor system is a continuous stirred tank reactor
(CSTR), and the separation system consists of an
extractor unit, a flash unit and a distillation col-
umn. The CSTR, the extractor unit, the flash unit
and the distillation column are all model parts
in the developed schema. A model can be repre-
sented in a structure shown in Fig. 4. Specifically,
a model has a name and a unique ID which can be
used to assist in model management. The model
can be a continuous, or a discrete, or a hybrid
model indicated by domain. A model has one or
many input ports and output ports, each port is
described by a portName, a unique PortID, and a
unit for the port. Such description eliminates any
confusion in the connection of ports.



A model can also have sub-models, as illustrated
in Fig. 4. The inclusion of the sub-models imple-
ments the vertical integration concept discussed
in the previous section.

A process model has mathematical concepts like
variables, parameters, and equations. The behav-
ior of a model is determined by its variables which
are constrained by mathematical equations. The
variables, parameters and equations for a model
are defined in our schema as variables and equa-
tion. Each variable or parameter has a name, a
unique ID, the default value, its unit, and the
constraint for the variable or parameter. the defi-
nition of variables enables the handling of general
variables and parameters in various processes.

We have created an equation structure, shown in
Fig. 5, to describe the equations for a model. A
equation in the exchange language comprises the
left-hand-side equationLHS and the right-hand-
side equationRHS, relation is defined to describe
the relationship between the two sides. Though
the term ’equation’ has been used in the exchange
language, the equation type in the schema is
capable to define interim variables, mathematic
terms, equations or inequalities.

It should be mentioned that there are alterna-
tive ways to represent equations. In CapeML
(Wedel, 2002), MathML is adopted for this pur-
pose. However, as indicated in (Wedel, 2002), a
MathML-based solution adds difficulties to the
implementation of the tools, and the mathemat-
ical viewpoint of MathML is counterintuitive to
many simulation tools. Unlike MathML, the equa-
tion definition in our schema originates from pro-
cess viewpoint. Namely, the definition of an equa-
tion in the schema is designed to be as similar as
possible to the one used in process research and
industries. Through repeatable use of operator,
matrix and variableArray, complex equations in
the processes can be straightforwardly represented
using the proposed schema.

To assist model management, the elementary ver-
sion control mechanism has been implemented in
the schema. A particular version of a process or a
model part consists of the version ID, the version
object and the version resource, as shown in Fig. 6.
Creators of the model, checkin rules, checkout
rules, version history and baselines for the version
objects form the content of the resource. The ver-
sion mechanism implemented in our schema is a
simplified variant of many popular version control
systems. However, we believe that this simplified
version control mechanism is appropriate, and it
should be also sufficient for the process model
management.

Before we conclude the paper, we need to justify
the exchange language proposed in this paper.

To our knowledge, two exchange languages have
been proposed for process modeling. One of the
languages is Modelica (Modelica, 2002). Modelica
can comprehensively represent models. However,
as pointed out in (Wedel, 2002), Modelica is
easy for human to read, but more difficult to be
parsed by a software program. Unlike Modelica,
our exchange language shares commonality with
CapeML (Wedel, 2002) on the ground that the
purpose of the language is to promote model
reuse and integration for different modeling and
simulation tools, hence it is more important if
the model representation can be easily handled
by computers.

Another exchange language is CapeML (Wedel,
2002) for CAPE-OPEN as previously discussed.
CapeML is implemented using XML DTD, while
our exchange language is defined using W3C
schema. There is rich literature available about
the differences between DTD and schema, or
about the advantage of the W3C schema, hence
we will not argue the benefits of using the W3C
schema here. One thing that we have to mention is
that it is possible to use reasoning in W3C schema.
We plan to use reasoning in the next draft of
the exchange language to further improve model
exchange capability.

Both Modelica and CapeML do not concern about
model management which is crucial for model
reuse and model integration. As illustrated above,
model management is part of the developed ex-
change language in this paper. Prototype research
has also been carried out to manage the process
models using the developed exchange language.
The details will be reported elsewhere.

3. CONCLUSION

In this paper, we have proposed and implemented
an exchange language for process modeling and
model management. The exchange language is
formulated in XML format and is defined by a
XML schema to facilitate easy integration with
existing tools and environments for process mod-
eling. The developed exchanged language can be
used to promote interoperability of process models
and to enable systematic management of process
models.

REFERENCES

Banares-Alcántara, R. (1995). Design support sys-
tem for process engineering I. requirements
and proposed solutions for a design process
representation. Computer & Chemical Engi-
neering 19, 267–277.



Fig. 4. Model Structure

Bieszczad, J. (2000). A framework for the
language and logic of computer aided
phenomena-based process modeling. PhD
thesis. Massachusetts Institute of Technology.

Bogusch, R., B. Lohmann and W. Marquardt
(2001). Computer-aided process modeling
with modkit. Computers and Chemical En-
gineering 25, 963–995.

Foss, B., B. Lohmann and W. Marquardt (1998).
A field study of chemical process modeling. J.
Process Control 8, 325–337.

Jensen, A.K. and R. Gani (1999). A computer-
aided modelling system. Computers and
Chemical Engineering 23, 673–678.

Krieger, J.H. (1995). Process simulation seen as
pivotal in corporate information flow. Chem-
ical & Engineering News 73(13), 50–61.

Lee, P.L., H. Li and I. T. Cameron (2000). De-
centralized control design for nonlinear multi-

unit plants: a gap metric approach. Chemical
Engineering Science 55(18), 3743–3758.

Marquardt, W., L.v. Wedel and B. Bayer (2000).
Perspectives on lifecycle process modeling. In:
Foundations of computer-aided process design
(M.F. Malone, J.A. Trainham and B. Car-
nahan, Eds.). Vol. 96. pp. 192–214. AIChE
Symp. Series 323.

Modelica (2002). Modelica: A unified object-
oriented language for physical systems mod-
eling. http://www.Modelica.org/.

Schopfer, G., L.v. Wedel and W. Marquardt
(2000). An environment architecture to sup-
port modeling and simulation in the process
design lifecycle. In: AIChe Annual Meeting.
Los Angeles.

Wedel, L.v. (2002). CapeML - A model exchange
language for chemical process engineering.
Technical report. RWTH Aachen.



Fig. 5. Equation Structure

Fig. 6. Version Structure


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



