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Abstract: A method is proposed for batch process monitoring and fault diagnosis, starting 
from a single batch reference data and updating with accumulation of successive batches. 
A moving data window method is adopted for exploring local covariance structure, stage 
division, and the development of monitoring models. The application to an injection 
molding process shows the effectiveness and feasibility of the proposed method for batch 
industry. Copyright © 2004 IFAC 
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1. INTRODUCTION 
 

Batch* processes are widely used in chemical, 
semiconductor, food and biology industry for 
producing high-value-added products to meet today's 
rapidly changing market. Batch processes are 
characterized by prescribed sequential operations in 
an infinite duration; they are subject to various 
disturbances that may affect the final product quality 
and the degree of reproducibility. Proper monitoring 
and diagnosis of the process is important for safety 
and quality improvement (Kourti and MacGregor, 
1995; Kosanovic et al., 1996; Wold et al., 1998; 
Louwerse and Smilde, 2000; Sprange et al., 2002; 
Ündey and Cinar, 2002; Kourti, 2003). 

Most batch process monitoring methods are based on 
such multivariate statistical projection techniques as 
multi-way principle component analysis (MPCA) 
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and partial least squares (MPLS) (Nomikos and 
MacGregor, 1994, 1995a, 1995b). In those methods, 
all correlation information in process variables over 
the whole batch duration are extracted to develop a 
statistical model for the monitoring of the processes. 
This type of models is effective in determining 
whether or not a batch operation is normal as a post 
process analysis tool. The requirement of many cycle 
reference data and the drawbacks associated with on-
line process monitoring may hinder its wider 
application to the industry. 

With the existing methods, the reference data 
collected for modeling are expected covering 
statistically all normal batch-to-batch variation. This 
is relatively easy for batch processes with short 
operation duration and processes that are 
inexpensive to conduct many trial runs. Some slow 
batch processes, such as bio-related processes, 
however, may take exceptionally long time to 
complete a batch run. In this case, a method will be 
needed for developing a monitoring model with a 
minimal batch cycle, for example, one successful 
batch run. The model can be improved with the 
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newly available batches, without having to wait for 
sufficient successful batches. 

This paper proposes to develop such a monitoring 
method starting with minimum successful batches. 
The initial database may contain only one successful 
batch run. The basic unit for modeling is a moving 
data window. In each window, data are arranged as a 
two-way matrix, where each row contains process 
measurements at each sampling interval, and rows 
are arranged according to time. Data windows are 
properly normalized before being used to derive a 
PCA model for each window to extract local 
covariance information. This method is termed the 
moving time-window PCA-based batch modeling in 
this paper. 

The proposed moving time-window PCA is similar 
to the moving principal component analysis by Kano 
et al. (2001), which was developed for continuous 
processes for detecting changes of process operation 
condition. Lennox et al. (2001) had also presented a 
method called moving window PCA for batch 
processes. Their method, however, also requires 
sufficient successful batches for modeling.  

As mentioned before, the PCA model of each time 
window contains local covariance information. 
Although batch process variables are time-varying, 
the local covariance structure in process 
measurements will be similar when the data of two 
windows have the similar underlying characteristics.  
This idea is similar to the method of the authors (Lu 
et al., 2004a), in which a batch process is divided 
into “stages” according to the changes of process 
correlation, and then a sub PCA model is built for 
each stage for monitoring. The differences between 
this proposed method and previous method lie in: (1) 
this paper focuses on the change of the covariance 
structure in time direction, not in batch direction; and 
(2) it requires only one reference batch for initial 
modeling, and the model is updating with the 
accumulation of new successful batch data. The 
details of the proposed method are given in section 2. 
An illustrative example is shown in section 3. 
Conclusions are given in the last section. 

 

2. METHODOLOGY 

2.1. Moving time-window PCA-based batch 
modeling  

As mentioned before, it is attractive to develop a 
data-based model for process monitoring using 
limited batches. In this proposed modeling method, 
the reference data can be an arbitrary successful 
batch of history, represented as X N , where N  
is the total sampling points in the batch run, and m  
is the number of process variables. As illustrated in 
Figure 1, a moving time window of the batch is 
proposed to extract the local covariance information. 

( )m×

( )X n m× n

)

The data in a window are arranged as a two-way 
matrix, noted as , where  is the data length 
in a window. Obviously, a large window will result 
in stable local PCA models, reliable but slow fault 
detection; a small window can rapidly detect process 
abnormalities but may have excessive false alarms. 
In this paper, n  is approximately of two or three 
times of the number of process variables, as 
recommended in the field of multivariable regression 
to ensure a reliable statistical model (Johnson and 
Wichern, 2002).  Moving step can be set as small as 
1 for prompt fault detection.  

With this arrangement, (  number of windows 
can be resulted for each batch, designated as, , 

. Each window should be mean-
centered to provide the reference trajectories of 
process variables for normalizing the new batch for 
online process monitoring. At the same time, the 
measurements should be also properly scaled to 
eliminate the influence of different measuring units. 
After normalization, PCA can be applied to each 
moving time-window, X T . The resulted 
PCA loading matrices, P m , contain process 
covariance information in the  data window.  
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 Although the batch process variables are time 
varying, the covariance structure of two neighboring 
windows will not change much, provided that the 
process characteristic does not change rapidly. 
During the time when the process is driven by the 
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Fig. 1 Illustration of moving time-window PCA method 



similar underlying characteristic, those windows will 
have similar covariance structures, consequently, the 
similar PCA loading matrices. In this way, a batch 
process can be divided into several stages or phases, 
of different process characteristics. Covariance 
structure changes, in corresponding to the changes of 
process characteristics, can be used to divide the 
process into stages. 

There are several methods for defining the similarity 
of two PCA loading matrices. For instance, 
Krzanowski (1979) presented a PCA similarity 
factor as a measure of the similarity between two 
data spaces; and Johannesmeyer et al. (2002) 
discussed a statistical method for comparing two 
PCA models by calculating the T  and/or 

similarity factor. The existing methods are, 
however, ill-suited for partitioning simultaneously a 
large number of PCA models into groups according 
to their similarities. The PCA loading clustering 
algorithm (Lu et al., 2004a) is adopted here to divide 
the moving time-window PCA models into groups to 
reflect the change of process covariance structure. 
By the clustering algorithm, (  number of 
moving time-window PCA loading matrix P  are 
partitioned into C number of sub groups, where the 
loading matrices remain similar within the same 
group, but showing significant difference between 
groups. The clustering results, associated with 
process operation time, can be used to define process 
sub stages. The scheme of stage division is 
illustrated in Figure 2. 

2
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A stage PCA model can be developed by finding an 
optimal PCA loading matrix as the representative 
one for that stage, mathematically,  
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where  is the number of loading matrices 
belonging to stage c c . The stage 
representative loading matrix, P , is divided into 

two parts, 

cn
( 1, ,C=

*
c

*(c A× *)cP m  and *( ( )cP m m A× − * )c , for 
principal component and residual subspaces, where 
the number of retained principal components, *

cA , 
can be selected also by the method (Lu et al., 2004a). 
Similarly, the stage representative singular value 
matrices, *

cΛ , are also defined for monitoring. 
(1×

h

For data )mx , the principal component score and 
SPE can be calculated by the following stage PCA 
model,  
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The initial control limit trajectories for the two 
statistics, Hotelling-  and  (or SPE), are 
estimated from the first successful reference batch. 
With new batches available, the control limits can be 
gradually updated to focus more on the batch-to-
batch variation. The determination of the initial 
control limits and the updating procedures are given 
in the next. 

2T Q

2.2. On-line monitoring and model updating 

In on-line monitoring, one should first determine 
which stage new data of the evolving batch belong to 
before calling the corresponding stage PCA model to 
calculate the two statistics. Since process operation 
time can be associated with the stage division results, 
one can determine the stage that new data belong to 
by simply checking which time span the current 
sampling falls to. Process monitoring is conducted 
by comparing the two statistics with the 
predetermined control limits. When the statistics go 
beyond the control limit, responding to an 
abnormality, the contribution plot (Miller et al., 
1998), a commonly used diagnosis tool, can be used 
to show the variables impacted by the occurred 
abnormality.  
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The proposed stage monitoring method has been 
derived from a single reference batch, considering 
only within-batch information. Batch-to-batch 
variation information can also be explored with 
accumulation of batches, e.g., by adjusting the stage 
representative PCA loading matrix and the control 
limit of SPE.  

Initial Control limits of the two statistics Fig. 2. Scheme of stage-division based on window’s PCA loading 
matrices. 

The control limits of Hotelling-  are estimated for 
each stage, while the SPE limits are estimated within 
each moving window.  
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Adopting the works of Box (1954) and Jackson and 
Mudholkar (1979), the SPE statistic can be 
approximated by a weighted Chi-squared distribution, 

2
h , where the weight g  and the freedom degree  

can be obtained following the same approach of 
gχ



Nomikos and MacGregor (1995a). The parameters of 
the 2

h  distribution at time k  are estimated from 
the SPE values in the moving window ( )kX , 
that is, g v m= 2) /k k kv=and , where m  is 
the average of the window's SPE values and v  is 
the corresponding variance. Thus, SPE control limit 
at time  can be approximated by,  
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Stage model and the SPE control limits updating 

When a new batch run follows the similar operation 
sequence and variable trajectories of the reference, it 
can be considered as a normal batch. The stage PCA 
models, reference trajectories and control limits, 
should be adjusted to include the normal batch-to-
batch variation. 

 The stage representative PCA loading matrix as 
defined in Equation (1), i.e., the center of the 
window’s PCA loading matrices that belongs to 
stage c, may move with the accumulation of new 
successful batch data. The new center can be readily 
obtained by recalculating Equation (1) with the 
window’s PCA loading matrices for the new normal 
batch. 

 The control limits detailed in the last section are 
derived from one reference batch, they may be too 
tight (or loose) in certain periods for monitoring a 
new batch. It is desirable to adjust the control limits 
by taking the batch-to-batch variation into account. 
For the initial SPE control limits, SP  are estimated 
from the SPE values of the data in the 
window, . In the updating procedure, the 
data used for estimating the parameters in Equation 
(4) can be augmented to include the data of the new 
batch, 

w = ,                              (5) 

where  is gradually filled by the new data at time 
 of different batches. By doing so, the moving 

window will contain more and more batch-to-batch 
variation, and the SPE control limits estimated from 
this new data window will be correspondingly 
adjusted. 

k

 

3. ILLUSTRATIVE EXAMPLE 
 

The proposed modeling and monitoring method is 
tested on a batch process, injection molding process. 
Although the proposed method is developed for 
those long batches, the method works equally well 
with a relatively short batch such as the injection 
molding process.  

3.1. Injection molding process 

Injection molding  (Rubin, 1972; Yang and Gao, 
1999), a key process in polymer processing, 
transforms polymer materials into various shapes 
and types of products. A typical injection molding 
process consists of three physical stages, injection of 
molten plastic into the mold, packing-holding of the 
material into the mold under pressure, and cooling of 
the plastic in the mold until the part becomes 
sufficiently rigid for ejection. Plastication takes place 
in the barrel in the early cooling phase, where 
polymer is melted and conveyed to the front of barrel 
by screw rotation, preparing for next cycle. 

Figure 3 shows a simplified diagram of a typical 
reciprocating-screw injection molding machine with 
instrumentations. Several normal batches are 
collected under the same operation condition to the 
previous work (Lu et al., 2004b), among which an 
arbitrary batch is used for modeling, and the other 
cycles are used for model updating. An abnormal 
batch with check-ring problem is also conducted to 
test the proposed process monitoring and diagnosis 
scheme. Ten process variables are selected for 
modeling, that is, Nozzle Pressure (No.1), Stroke 
(No.2), Injection Velocity (No.3), Hydraulic 
Pressure (No.4), Plastication Pressure (No.5), Cavity 
Pressure (No.6), Screw Rotation Speed (No.7), SV1 
valve opening (No.8), SV2 valve opening (No.9), 
and Mold Temperature (No.10), respectively. 
Window length is set to be 30 and moving step is 1. 

3.2. Experimental results 

Without using any prior process knowledge,  
the proposed algorithm automatically divides the  
trajectories of the injection molding batch into  
eight stages according to the change of local 
covariance structure, among which four long stages 
correspond to the four physical operation stages, i.e., 
injection, packing-holding, plastication and cooling 
stages. Short new stages emerge between the four 
main stages, corresponding to the transitions from 
one major stage to the next. Dividing a batch process 

Fig. 3. Simplified illustration of injection molding machine 
and measuring points 



into “steady” and transient stages can not only 
benefit process monitoring and diagnosis, but 
enhance process understanding.  

On-line process monitoring and fault diagnosis are 
conducted by judging whether the scores and SPE 
value of the coming measurements in a running 
batch are below the control limits. In the on-line 
monitoring of the batch with check-ring problem, 
both the 2T  and SPE charts can detect the fault, as 
shown in Figure 4. Hotelling-  statistic is more 
sensitive than SPE because the failure of check-ring 
valve will not significantly deteriorate the covariance 
structure of time direction, however, the deviations 
from the reference variable trajectories result in large 
principal component scores, hence, have significant 

 values.  

2T

2T

By process knowledge, the check-ring problem 
occurs in the injection stage, also impacts the 
packing-holding and plastication stages, but have 
little influence to the cooling stage. The monitoring 
results shown in the 2T  chart of Figure 4 agree well 
with the aforementioned. As the check-ring problem 
has no influence on the cooling stage, the plot for 

presentation of the results in the affected stages.  The 
SPE chart of Figure 5 shows, the monitoring of the 
same fault with control limits updated with ten 
successful cycles. A comparison of Figures 4 and 5 
show the adjustment of the control limits, by 
considering the batch-to-batch variation. The results 
are similar, indicating that it is viable to monitor 
such a process starting with just one cycle data. The 
diagnosis result is shown in the contribution plot in 
Figure 5, where Nozzle Pressure (No.2), Stroke 
(No.3), Injection Velocity (No.4), Hydraulic 
Pressure (No.4), Cavity Pressure (No.6) and Mold 
Temperature (No.10) are seriously impacted by the 
detected fault. This fault pattern is well agreed with 
the check-ring problem. Detailed description on the 
check-ring problem can be found in reference (Lu et 
al., 2003). 

this long stage is not given to allow more detailed 

4. CONCLUSION 

A new batch monitoring method has been proposed 
for those cases where there exist difficulties in 
collecting sufficient cycles in limited time. The 
proposed method uses a single batch reference data 
to extract local covariance information by applying 
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(a) Fig. 5.  SPE monitoring chart with updated control limits for the  
batch with check-ring problem. 
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(b) 

Fig. 4.  Monitoring charts of a faulty batch with check-ring problem.
(a). Hotelling T2 monitoring chart; 
(b). SPE monitoring chart. 
(Solid line, 99% control limit; Dash line, 95% control limit) 

Fig. 6. Contribution plots for the batch with check-ring problem.  



PCA on a moving time-window that scans process 
trajectory over the batch duration. Process stages are 
determined by analyzing the change of process 
covariance structure, by partitioning the window's 
PCA loading matrices using a clustering algorithm. 
A sub PCA model has been developed for each stage 
according to the clustering results. Model updating 
has also been discussed with newly available batches. 
The proposed modeling method can not only give a 
valid monitoring scheme with a minimal reference 
batch, but also it can divide the batch into stages. 
The division of a batch process without the 
requirement of prior process knowledge can improve 
process monitoring efficiency in terms of reduction 
of computation resources, also enhance process 
understanding, and consequently benefit fault 
diagnosis. 
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