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Abstract: In this paper, the design of probabilistic observers for mass-balance based bio-
process models is investigated. It is assumed that the probability density function of every
uncertain parameter, input and/or initial state is known a priori. Then, the probability
density functions of the state variables are obtained, at any time, by considering the
image of this initial probability density function by the flow of the dynamical system.
In comparison to classical open-loop interval observers, the method provides information
on the confidence level of the estimates rather than simple upper and lower bounds. The
numerical implementation of the method is closely considered and an application to an
industrial anaerobic digester is detailed.
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1. INTRODUCTION

One of the main difficulties in the monitoring and
control of biological reactors lies in the absence, in
most applications, of cheap and reliable sensors capa-
ble of providing direct, on-line measurements of the
biological state variables. The design of observers for
online monitoring of the state variables which are not
measurable in real time has thus received much atten-
tion in the literature, and has given rise to numerous
practical applications [Bastin and van Impe, 1995].

Bioprocess models generally consist of two parts: (i)
a part based on mass-balance considerations which re-
quires few phenomenological knowledge; (ii) another
part that describes the biological reactions (kinetics)
and therefore includes a large part of phenomenolog-
ical knowledge. This later part introduces large un-
certainties in the models, and it is well-known that

the classical observers such as the extended Kalmann
filter and the high gain observer [Gauthier et al., 1992,
Bernard et al., 1998] may exhibit a poor convergence
rate or even fail to converge. Taking advantage of
the special model structure, asymptotic observers have
been proposed which do not require the knowledge
of the kinetics [Bastin and Dochain, 1990]. More re-
cently, interval observers have been designed in order
to deal with these uncertainties [Rapaport and Gouzé,
2003]. The idea is to estimate rigorous intervals for the
state variables by considering conservative bounds on
the uncertainties (such as imprecisions in the influent
measurements or model parameters). This requires to
weaken the observation principle in the sense that the
observation error is no longer expected to asymptoti-
cally converge to zero. Several applications have been
successfully considered for biological systems [e.g.
Gouzé et al., 2000]. But even if interval observers are
more robust than the aforementioned asymptotic ob-



servers, poor information is obtained on the estimates
since "only" guaranteed upper and lower bounds are
derived.

In many situations however, more information than
simple upper and lower bounds is available on the
uncertainties, e.g., their probability density functions
(p.d.f.). For the uncertain parameters in particular,
confidence intervals can be easily obtained from the
application of a parameter identification procedure. In
this work, we extend the concept of interval observers
by developing probabilistic observers which estimate
the probability density functions of the unmeasured
states. Major differences between the proposed ob-
servers and the extended Kalman filter are that no as-
sumption is stated here for the kinetic expressions and
that aribitrary p.d.f.s can be selected for the uncertain
parameters.

The paper is organised as follow: some results on both
asymptotic and interval observers are first recalled in
section 2; probabilistic observers are considered in
section 3 for general mass-balance bioprocess models,
and their numerical implementation is closely con-
sidered; the method is illustrated in section 4 by a
practical application of a probabilistic observer to esti-
mate the COD concentration in an industrial anaerobic
digester.

2. ASYMPTOTIC AND INTERVAL OBSERVERS
FOR BIOPROCESSES

A bioprocess operated in a stirred tank bioreactor is
often described by means of general mass-balance
based models of the following form [Bastin and
Dochain, 1990]:

ξ̇ =Kr (ξ) + D
(
ξin − ξ

)
− q (ξ) (1)

where ξ ∈ R
nξ (resp. ξin) denotes the concentration

vector in the liquid phase (resp. in the influent), K ∈

R
nξ×nr the yield coefficient matrix, r ∈ R

nr the
reaction rate vector, q ∈ R

nξ the gaseous exchange
vector, and D ∈ R the dilution rate.

Throughout the paper, it is assumed that (nξ − nb)
components of the state variables are measured on-line
with nξ−nb ≥ nr, and we denote ξa ∈ R

nξ−nb , ξb ∈

R
nb the measured and unmeasured state variables

respectively. It is also assumed that the gaseous flow
rates q are measured on-line. It follows that Eq. (1)
can be rephrased as:

ξ̇a =Kar (ξ) + D
(
ξin

a − ξa

)
− qa (ξ) (2)

ξ̇b =Kbr (ξ) + D
(
ξin

b − ξb

)
− qb (ξ) (3)

with (Ka,Kb),
(
ξin

a , ξin
b

)
and (qa, qb) being the in-

duced partition of K, ξin and q respectively.

We state the following hypothesis:

Hypothesis 1. Matrix Ka ∈ R
(nξ−nb)×nr has full

rank.

From hypothesis 1 and a linear change of variables,
the following nb-dimensional auxiliary system can be
derived:

ż =−D
(
z − zin

)
−Pqa − qb (4)

ξb = z −Pξa (5)

where: P
∆
= −KbK

†
a

and K†
a is a left inverse of Ka. Note in particular that,

in the auxiliary system (4,5), the measured variable ξa

is used as an input.

The following result holds.

Lemma 1. Under Hypothesis 1 (and provided D is
persistently exiting), the solution ξ̂b of the following
open-loop observer converges asymptotically towards
the solution ξb of the reduced system (3):

˙̂z =−D
(
ẑ − zin

)
−Pqa − qb (6)

ξ̂b = ẑ −Pξa (7)

Proof. see, e.g., Bastin and Dochain [1990]. �

Such observers have however several defects due to
their open-loop nature. In particular, it is implicitly
assumed that the mass-balance part of the model is
perfectly known and that neither the measurements,
nor the values of the feeding inputs, nor the estimates
of the yield coefficients (matrix K) are biased. Oth-
erwise, the predictions of the mass-balance based ob-
server (6,7) will be corrupted and might provide poor
estimates of the unmeasured concentrations ξb.

In the case of large uncertainties, it is no longer pos-
sible to build exact observers guarantying that the
observation errors converges to zero. Therefore, the
observation principle must be revisited and the re-
sults must be weakened. A complementary approach,
called interval observers, provides guaranteed enclo-
sures on the estimated states, whenever upper and
lower bounds are known on the uncertain inputs and
parameters. Such observers consist in coupling two
estimators providing each an over-estimate x+ (t) and
an under-estimate x− (t) of the unknown state vari-
ables x (t) at any time. Details on interval observers
can be found, e.g., in Gouzé et al. [2000], Rapaport
and Gouzé [2003].

The following proposition applies the concept of inter-
val observers to the auxiliary system (4) derived from
the general mass-balance based model (1).

Proposition 1. The following pair of systems is an
interval observer for the variables z (t) solution of (4):



ż+ =−Dz+ (t) + Dzin+
(t)

−P−
(
p+, p−

)
qa (t) + qb (t)

ż− =−Dz− (t) + Dzin−
(t)

−P+
(
p+, p−

)
qa (t) + qb (t)

with: z+ (0) = ξ+
b (0) + P+

(
p+, p−

)
ξa (t)

z− (0) = ξ−
b (0) + P−

(
p+, p−

)
ξa (t)

where the unknown parameters p ∈ R
np and inputs

zin ∈ R
nb are characterised by their upper and lower

bounds:

p−j ≤ pj ≤ p+
j , ∀j = 1 . . . np

zin
i

−
(t)≤ zin

i (t) ≤ zin
i

+
(t) , ∀t , ∀i = 1 . . . nb

and the upper and lower bound matrices P+, P− are
defined componentwise:

P−
i,j

(
p+, p−

)
≤ Pi,j (p) ≤ P+

i,j

(
p+, p−

)
,

∀p ∈
[
p−, p+

]
, ∀i = 1 . . . nb , j = 1 . . . nξ − nb

Proof. See, e.g., Rapaport and Gouzé [2003]. �

Interval observers provide guaranteed bounds on the
estimation of the unmeasured variables, given rigor-
ous bounds on the parameters and the inputs. How-
ever, the resulting intervals might be large if the un-
certainty is high. In this case, it could be interesting to
build subintervals on the estimates corresponding to
different confidence levels on the uncertainty. Tools to
derive such observers are discussed in the next section.

3. PROBABILISTIC OBSERVERS

As mentioned before, it is not rare that the influ-
ent concentrations and/or model parameters are not
known precisely for biological processes. For param-
eters in particular, estimates as well as confidence
intervals can be obtained under the application of a
parameter identification procedure. More knowledge
than simple upper and lower bounds can obviously be
obtained on the unmeasured state variables, e.g. the
probability distribution of the estimates.

3.1 Mathematical background

In mass-balance based bioprocess models of the form
(1), the uncertainties may correspond to the yield coef-
ficients in matrix K, to the influent concentrations ξin,
and/or to the unmeasured state variables at initial time
ξb0. In addition, the measurements of the state vari-
ables ξa and the gaseous flow rates qa, qb might be
noisy. In order to derive the p.d.f.s of the unmeasured
state variables ξb, we consider the auxiliary dynamical
system (4,5) defined in section 2.

Hypothesis 2. The auxiliary dynamical system (4,5)
falls into the following class of dynamical systems:


ż (t) = A (p, t)z (t) + b (p, t)

ξb (t) = z (t) + c (p, t)
z (0) = ξb (0) − c (p, 0)

(S)

where p =
(
p1, . . . , pnp

)t
∈ R

np denotes the vector
of the uncertain parameters, and the components of
A ∈ R

nb×nb , b ∈ R
nb and c ∈ R

nb are C1 with
respect to p1, . . . , pnp

. In addition, the uncertain pa-
rameters p and initial conditions z0 have independent
p.d.f.s.

Remark 1. For sake of simplicity, we consider that pa-
rameters p1, . . . , pnp

are constants with known p.d.f..

Notations 1. In the sequel, the following notations are
used: χ0 =

(
ξb

t
0, p

t
)
, Z0 = (zt

0, p
t), χt =

(
ξb

t
t, p

t
)

and Zt = (zt
t, p

t). In addition, we denote fχ0
, fZ0

,
fχt

and fZt
their respective p.d.f..

The estimation of the p.d.f. of the unmeasured state
variables ξb at a given time t can be decomposed into
three successive steps:

1) estimate the p.d.f. of the random variable Z0

at initial time, from the individual p.d.f. of the
unmeasured state variables ξb0 and the uncertain
parameters p;

2) compute the image fZt
at time t of the p.d.f.

of fZ0
, by the flow of the auxiliary dynamical

system (4);
3) estimate the p.d.f. of the unmeasured state vari-

ables ξbt at time t, from the p.d.f. of Zt.

The following Theorem [see, e.g., Grimmett and
Stirzaker, 2001] provides a general framework to cal-
culate the image of a given p.d.f. by a C1-diffeomor-
phism for each aforementioned step.

Theorem 1. Let U , V be open subsets of R
n, K be

a compact subset of U , and φ : U �−→ V be a C1

diffeomorphism. If z is a random variable with a p.d.f.
fz , then the random variable ω = φ (z) has a p.d.f. fω

given by:

fω (ω) =

{
fz

(
φ−1 (ω)

)
det

(
Jφ−1 (ω)

)
if ω ∈ φ (K)

0 otherwise

where Jφ denotes the Jacobian matrix of φ.

For steps 1) and 3), let the mapping ψt be defined as:

ψt : U ′
t −→Ut = ψt (U ′

t)

Zt �−→ χt =
(
ξb

t
t, p

t
)t

where U ′
t is an open subset of R

nb+np . From Hypoth-
esis 2, the following property is immediate.

Property 1. ψt is a C1-diffeomorphism.



For step 2), consider the mapping ϕt
0 defined as:

ϕt
0 : U ′

0 −→U ′
t = ϕt

0 (U0)

Z0 �−→Zt =
(
zt

t, p
t
)t

with U ′
0 being an open subset of R

nb+np . The map-
ping ϕt

0 can be explicitly defined. Indeed, from linear
systems theory, a general solution of system (S) can
be obtained from:

zt = Φ (0, t, p)z0 +

∫ t

0

Φ (τ, t, p) b (τ, p) dτ (8)

where Φ (·, ·, p) ∈ R
nb×nb is the transition matrix, i.e.

the solution of the matrix differential equation:

d

dt
Φ (τ, t, p) =A (t, p) Φ (τ, t, p) , ∀t

Φ (τ, τ, p) = Inb×nb

Based on the analytical solution of system (S) and
Hypothesis 2, it can be shown that the following
property holds:

Property 2. ϕt
0 is a C1-diffeomorphism.

Proposition 2. The p.d.f. fχt
corresponding to the

image χt =
(
ξb

t
t, p

t
)t

of the random variable χ0 ∈

K0 ⊂ U0 is given by:

fχt
(χt) =




fχ0

(
ψ0 ◦ ϕt

0
−1

◦ ψ−1
t (χt)

)
det Φ (0, t, p)

if χt ∈ Kt = ϕt
0 (K0)

0 otherwise

Proof. From Properties 1 and 2, the transformations
in steps 1), 2) and 3) are C1-diffeomorphisms. The
overall transformation ψ0 ◦ ϕt

0
−1

◦ ψ−1
t is therefore a

C1-diffeomorphism (chain rule of differentiation), and
Theorem 1 applies. Since,

det Jψ0
= det Jψt

= Inb+np

then,

det J(ψ0◦ϕt
0

−1◦ψ
−1

t ) = det Jϕt
0

−1

In addition,

detJϕt
0

= det

(
Φ (0, t, p) �

0np×nb
Inp×np

)
= det Φ (0, t, p)

which completes the proof. �

Finally, individual p.d.f.s for the unmeasured state
variables ξb can be obtained, at any time t, by inte-
grating the joint state/parameter p.d.f. with respect to
the uncertain parameters p. Also note that the afore-
mentionned procedure does not require any particular
assumption for the initial state/parameter p.d.f.s, and
is therefore not restricted to unimodal p.d.f.s.

3.2 Numerical implementation and practical application

In the sequel, we restrict ourselves to the subclass
of dynamical systems (S) for which the matrix A

is Hurwitz. Otherwise the dynamical system would
be unstable, which is unrealistic here since (S) is
intended to be used as an auxiliary system/observer
of the stable BIBO class of models (1).

The numerical implementation of the previous frame-
work can be decomposed into two successive steps:

1) Compute the image of the joint p.d.f. by the
diffeomorphism ψ0 ◦ ϕt

0
−1

◦ ψ−1
t . This can

be done, e.g., by defining a grid in the joint
state/parameter space. Note that due to the linear-
ity of the dynamical system in the state variables,
it is only necessary to integrate the trajectories
of the dynamical system (S) at the edges of the
state variation range; for fixed values of the pa-
rameters, evenly spaced points in the initial grid
indeed remain evenly spaced at any time (see
Eq. (8)).

2) Integrate the joint state/parameter p.d.f. at a
given time t, with respect to the parameters, in
order to obtain individual p.d.f.s for the state
variables.

It should be stressed that step 2) is by far the most
complex and time consuming step in the procedure.
As the influence of the initial conditions z0 vanish
with increasing time, the joint p.d.f. tends to degen-
eracy (it becomes infinitely thin), and eventually re-
sults in inaccurate p.d.f.s. This can however be eas-
ily detected in pratice, e.g., by monitoring the error

ε =
∣∣∣1 −

∫
Kt

fχt
dχt

∣∣∣. The degeneracy of the joint

p.d.f. is illustrated in the example below.

ILLUSTRATIVE EXAMPLE – To illustrate the practi-
cal difficulties encountered when attempting to imple-
ment the probabilistic observer numerically, we con-
sider the following simple dynamic system{

ż (t) = −z (t) + p , ∀t > 0
z (0) = z0

(T )

and assume that either p.d.f. of z0 and p are normal
distributions, denoted N (z0, σz0

) and N (p, σp) re-
spectively. Then applying Proposition 2 allows us to
compute the joint p.d.f. of Zt = (zt, p)

t at a given
time t > 0 as

fZt
(Z) =

fZ0

(
ϕt

0
−1

(Z)
)

det Φ (0, t)

where

Φ (0, t) = et−t0

fZ0
(Z) =

1

2πσz0
σp

e
− 1

2

[(
z−z0

σz0

)
2

+
(

p−p
σp

)
2

]

ϕt
0
−1

(Z) =

(
et−t0z +

[
1 − et−t0

]
p

p

)



Figure 1. Evolution of the joint state/parameter p.d.f. Left plot: t = 0; Middle plot: t = 0.5; Right plot: t = 1.5.

for any Z = (z, p)
t. By combining these expressions

and letting t tend to infinity, it can be proved that

fZt
(Z)

t−→+∞
−−−−−→ +∞ , if z = p

fZt
(Z)

t−→+∞
−−−−−→ 0 , otherwise

This is illustrated in Fig. 1. �

It is frequent, from a monitoring point of view, that the
key state variables are measured at a low frequency
from off-line analysis in order to check for proper
process operation (e.g., once a week in anaerobic di-
gesters for COD and VSS). Accordingly, the approach
used in this work to avoid the aforementionned nu-
merical problems consists in repeatedly reseting the
observer from a periodic process sampling. For practi-
cal applications where the observer cannot be reseted,
it is beleived that the numerical difficulties could be
circumvented by adding an artificial term acting as a
diffusion term [see, e.g., Zeeman, 1988]; this will be
the topic of future research.

4. CASE STUDY

A simple model of the anaerobic digestion process is
considered by accounting for a single substrate (COD)
and a single bacterial population, denoted s and x

respectively. The biological reaction is represented as

k s
r(ξ)=µ(·) x
−−−−−−−→ x

where k is a yield coefficient, and µ (·) represents the
bacterial growth rate. By assuming perfect mixing in
the digester, the following 2-dimensional dynamical
model is obtained

ẋ (t) =−D (t) x (t) + µ (·) x (t) (9)

ṡ (t) =−D (t)
(
s (t) − sin (t)

)
− k µ (·) x (t)

where sin (t) stands for the concentration of substrate
in the feeding stream. In addition, the methane flow
rate is defined as qCH4

(t) = k′ µ (·) x (t) with k′

being the yield coefficient associated to methane pro-
duction.
Based on model (9), the following auxiliary system
can be derived for the biomass concentration provided
that the methane gaseous flow rate as well as the influ-
ent COD are measured on-line

˙̂s (t) =−D (t) ŝ (t) +

[
D (t) sin −

k

k′
qCH4

(t)

]
(10)

Experimental data from a 2, 000 m3 industrial digester
located at Agralco Ltd. in Estella, Spain, are consid-
ered. The digester is fed with wine distillery vinasses,
and the measurements consist of the dilution rate D

and the methane outflow rate qCH4
at a high sampling

frequency over more than 140 days. In our objective
to design a probabilistic observer for estimating the
COD concentration based on Eq. (10), we consider
the uncertainties on (i) the parameter γ = k

k′
, (ii) the

influent concentration sin and, (iii) the COD concen-
tration s0 at initial time.

• The value of γ was estimated off-line based
on mass-balance considerations along with its
standard deviation: γ = 5.30 10−2 ± 0.98%. It
is assumed that the p.d.f. for this parameter is
Gaussian.

• The uncertainty on sin is handled by consider-
ing a multiplicative noise ε defined as sin (t) =

sin (1 + ε (t)) , ∀t. It was found from experi-
mental data that sin = 35.9 g.L−1 and that the
p.d.f. of ε can be assimilated to a normal distri-
bution N (0, σε) with σε = 0.124.

• In accordance to the discussion in subsection 3.2,
the observer is reinitialised every one week
by considering off-line COD measurements; the
p.d.f. of these initial concentrations zk = zexp (tk)
are assumed to be uniform in the range zk±20%.

Also note that the experimental data have been filtered
and, for the sake of simplicity, no measurement error
is taken into account here for D and qCH4

.

A probabilistic observer can be derived for the COD
concentration from Eq. (10) by applying Proposi-
tion 2. In this case, note that ψt = ψ−1

0 = I and

Φ (τ, t) = exp
[
−

∫ t

τ
D (s) ds

]
. The resulting p.d.f.

of the estimate ŝ are plotted in Fig. 2 (upper plot) at
different time instants. Experimental points are also
displayed for the sake of comparison. Note that the
variation range of ŝ (corresponding to the vertical
segments) is rather conservative, but a significant part
of the range has a null probability. Also note that
the experimental points are correctly enclosed within
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experimental data

0

5

10

15

20

0 20 40 60 80 100 120 140

Time [day]

ŝ
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Figure 2. Estimated COD concentration in the digester. Upper plot: Probability density function. Lower plot: Mean
value and standard deviation.

the non-null probability part, and that the maximum
likelihood estimate is close to the experimental points.

A straightforward interpretation for the p.d.f. can be
obtained by extracting the mean and standard devia-
tion values of ŝ. These values are pictured in Fig. 2
(lower plot). It can be seen in particular that the es-
timates are close to the experimental measurements,
and the interval corresponding to the standard devia-
tion of ŝ mainly encloses these measurements. From a
sensitivity point of view, the quality of the standard-
deviation based bounds is strongly affected by the
p.d.f. of parameter γ, while the influence of the initial
p.d.f. after the observer is reseted rapidely vanishes
and therefore remains limited.

5. CONCLUSIONS

In this paper, the design of probabilistic observers was
investigated for general mass-balance based biopro-
cess models. It was shown how the probability density
functions of the unmeasured state variables can be
derived from the knowledge of the probability density
functions of the uncertain parameters and the mea-
surement noises. An application of the method to the
estimation of the COD concentration in an industrial
anaerobic digester was then presented, which demon-
strate the tractability and good performances of the
approach.

Although only an asymptotic rate of convergence is
guaranteed in this paper, it is worth pointing out that
this rate can be chosen in some cases [Rapaport and
Gouzé, 2003]. Such probabilistic observers can there-
fore be used as tools to improve bioprocess moni-
toring. In addition, they could also be applied in the
scope of bioprocess supervision and fault detection,

e.g., by defining a given tolerance expressed in term
of a threshold confidence level.
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