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Abstract: Bioprocess models are often uncertain due to the lack of experimental data for
structure selection and parameter estimation. Maximum-likelihood parameter estimation
techniques, which take the measurement errors into account, allow confidence intervals in
the identified parameters to be evaluated. In turn, this information can be advantageously
exploited in the design of (more) robust state estimators (or software sensors) for process
monitoring and control. In this paper, the formulation of continuous-discrete Kalman
filters and receding horizon observers are extended to include a posteriori knowledge
on model parameter uncertainties. These extended observers/filters are then successfully
applied to a real-case study, i.e., animal cell cultures in perfusion mode.
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1. INTRODUCTION

State estimation techniques are particularly important
for monitoring bioprocess operation. Indeed, biomass
and component concentrations are difficult to mea-
sure on-line and measurements are often corrupted by
relatively large errors. As on-line measurements are
collected at discrete times only, and with relatively
low sampling rates (a few hours to 1-2 days), contin-
uous (model)–discrete (measurements) software sen-
sors taking the stochastic nature of the measurement
signals into account are the first choices in bioprocess
applications (Bogaerts and Vande Wouwer, 2003).

Stochastic continuous-discrete software sensors in-
clude the Kalman filter (Gelb, 1989) and the receding
horizon observer (Allgöwer et al., 1999; Bogaerts and
Hanus, 2001). In the former, uncertainties are intro-
duced in the form of uncorrelated white noises cor-
rupting the state and measurement equations. The se-
lection of the covariance matrices of these noises is of-
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ten based on some a priori knowledge and some form
of tuning. In the latter, measurement errors are in-
troduced in a maximum-likelihood or Gauss-Markov
cost function, which is repeatedly minimized in order
to estimate most-likely model initial conditions.

The main objective of this paper is to show how a pos-
teriori information on model parameter uncertainties,
which results from the model parameter identification
procedure, can be incorporated in the observer/filter
design. Indeed, maximum-likelihood parameter iden-
tification yields estimates of the parameter covariance
matrices which are very useful for model analysis and
validation purposes, but which are seldom exploited
when considering the state estimation problem.

As a result, extended forms of the Kalman filter and
receding-horizon observer are developed. These soft-
ware sensors are then applied to a real-case study,
i.e., CHO-K1 cell cultures in a bioreactor operated in
perfusion mode.

This paper is organized as follows. The next section
deals with the extended Kalman filter whereas sec-
tion 3 presents the full- or receding-horizon observer.



Section 4 describes the experimental set-up and shows
results of the application of both state estimation tech-
niques. Finally, section 5 is devoted to some conclud-
ing remarks.

2. EXTENDED KALMAN FILTER

The Kalman Filter is one of the most popular state es-
timation algorithms, which takes the stochastic nature
of the process and measurement noises into account.

Assume that the state equation for x ∈ Rnx and the
output y ∈ Rny are corrupted by normally distributed
white noise with zero mean according to

ẋ(t)= f (x(t),u(t), t)+w(t); w(t)∼N (0,Q(t)) (1)

yi =h(x(ti))+ vi; vi ∼N (0,Ri) , (2)

where Q ∈ R
nx×nx and R ∈ R

ny×ny are the state and
output error covariance matrices, respectively.

The continuous-discrete extended Kalman Filter (Gelb,
1989) makes use of a linearisation along the state es-
timate trajectory and corresponds to continuous-time
prediction and discrete-time measurements:

• initialization (i = 0,1,2, . . . )

x̂(ti) =x̂i (3)

P(ti)=Pi (4)

• continuous prediction step for ti ≤ t < ti+1

˙̂x(t)= f (x̂(t),u(t), t) (5)

Ṗ(t)=F(x̂(t),u(t), t)P(t)

+P(t)FT(x̂(t),u(t), t)+Q(t) (6)

• discrete correction step at t = ti (i = 1,2, . . . )

x̂i =x̂(t−i )+Ki
(

yi −hi(x̂(t
−
i ))
)

(7)

Pi =
(

I−KiH i(x̂(t
−
i ))
)

P(t−i ) (8)

Ki =P(t−i )HT
i (x̂(t−i ))

·
(

Hi(x̂(t
−
i ))P(t−i )HT

i (x̂(t−i ))+Ri
)−1

(9)

• linearisations

F(x̂(t),u(t), t)=
∂ f (x(t),u(t), t)

∂xT

∣

∣

∣

∣

x(t)= x̂(t)
(10)

H i(x̂(t → ti)) =
∂h(x(t))

∂xT

∣

∣

∣

∣

x(t)= x̂(t→ti)
(11)

The matrices P0, Q and Ri play the following roles:

• The initial state covariance matrix P0 represents
the confidence paid to the initial guess for the
state vector x̂0. If the latter is arbitrarily chosen,
the elements of P0 should be set to high values
(so that these estimates are almost replaced by
the measurements at the first correction instant,
where possible).

• The state covariance matrix Q is often used to
keep a certain level of uncertainty on the state
estimates preventing that the correction matrix
Ki vanishes for i → ∞, which would result in the

disappearance of the correction and therefore in
a pure simulation.

• The measurement covariance matrix R contains
information on the measurement noise. Large
values for the diagonal elements are equivalent to
significant measurement noise in the output sig-
nal and non-zero off-diagonal elements indicate
correlations between the respective signals. Less
confidence is therefore paid to the measurements
in the correction step.

A further extension of the Kalman filter is derived
in the following, taking the information about the
modelling errors into account. This information can be
quantified with the error covariance matrices obtained
at the model identification stage.

Consider the system

ẋ(t)= f (x(t),u(t), p); x(t0) = x0 (12)

yi =h(x(ti))+ vi; vi ∼ N (0,Ri) . (13)

Compared to (1), the disturbance of the state equation
does not appear explicitly, and the model parameter
vector p ∈ R

np is considered instead.

Consider an analogous system for the state estimate,

˙̂x(t) = f (x̂(t),u(t), p̂); x̂(t0) = x̂0 (14)

with the estimated initial state x̂0 and the estimated
parameter vector p̂. Their error covariance matrices
are denoted P0 and Qp, respectively, and are assumed
to be known, e.g., from a preliminary parameter esti-
mation.

The estimation error x̃ = x̂− x is due to the errors on
the initial state and the parameters, i.e. in first-order
approximation

x̃ ≈ Sp(x,u, p)p̃+S0(x,u, p)x̃0 (15)

where the sensitivity matrices are defined as

Sp =
∂x
∂p

; S0 =
∂x
∂x0

(16)

The covariance matrix of the estimation error is then
written

P = SpQpST
p +S0P0ST

0 (17)

The equations for the sensitivities of the state with
respect to the parameter vector and the initial state are
obtained through differentiation of the state equation
with respect to p and x0, respectively:

Ṡp = Fx(x,u, p)Sp +F p(x,u, p); Sp(t0) = 0 (18)

Ṡ0 = Fx(x,u, p)S0; S0(t0) = I (19)

with the Jacobian matrices

Fx(x,u, p) =
∂ f (x,u, p)

∂x
(20)

F p(x,u, p) =
∂ f (x,u, p)

∂p
. (21)



The dynamic equation for the propagation of P is
derived by differentiation of (17) with respect to time:

Ṗ = ṠpQpST
p +SpQpṠ

T
p + Ṡ0P0ST

0 +S0P0Ṡ
T
0 ;

P(t0) = P0 (22)

Substitution of the time derivatives Ṡp and Ṡ0 with (18)
and (19), respectively,

Ṗ = FxSpQpST
p +F pQpST

p +SpQpST
pFT

x +SpQpFT
p

+FxS0P0ST
0 +S0P0ST

0 FT
x ; P(t0) = P0 (23)

leads with (17) to

Ṗ = FxP+PFT
x +F pQpST

p +SpQpFT
p;

P(t0) = P0. (24)

The difference bewtween equations (24) and (6) is
the dynamic definition of the uncertainty in the state
equation

Q(t) =F p(x̂(t),u(t), p̂)QpST
p(t)

+Sp(t)QpFT
p(x̂(t),u(t), p̂) (25)

Ṡp(t) =Fx(x̂(t),u(t), p̂)Sp(t)

+F p(x̂(t),u(t), p̂); Sp(t0) = 0 (26)

3. FULL-HORIZON AND RECEDING-HORIZON
OBSERVERS

The so-called Full-Horizon observer is very much
alike an on-line parameter estimator, since it uses an
optimization algorithm to determine the most likely
initial conditions of the bioprocess model (Bogaerts,
1999; Bogaerts and Hanus, 2001), which is equivalent
to a cross-validation of the model. If, in addition,
some parameters are uncertain and re-estimated in
the course of state observation, the solution of the
estimation problem is equivalent to a direct model
validation. A major difference lies the reduced number
of on-line signals, as compared to a classical off-line
parameter estimation procedure.

Consider the non-linear system (12, 13). The principle
of the Full-Horizon observer is to estimate the best
initial condition in a maximum-likelihood sense and
to predict the current state through simulation of the
system:

˙̂x = f (x̂,u, p̂); x̂(t0) = x̂0|i (27)

with

[x̂0|i, p̂i] =argmin
x0,p

j(x0, p) (28)

j(x0, p) =
i

∑
k=0

(yk −h(x(tk,x0, p)))T R−1
k

· (yk −h(x(tk,x0, p)))

+
(

x0 − x̂0|0
)T

P−1
0

(

x0 − x̂0|0
)

+(p− p̂0)
T Q−1

p (p− p̂0) (29)

The first term in the cost function (28) represents the
classical sum of squared deviations between the exper-
imental data yk and model-predicted output h(x(tk)),
weighted by the measurement covariance matrix Rk.
The last two terms are introduced here to take the
a priori knowledge on the initial condition and the
parameter vector with their respective covariance ma-
trices P0 and Qp, e.g., calculated in a preliminary
parameter estimation procedure, into account.

The current estimate of the initial condition serves as
an initial guess for the following optimization step,
since it is supposed to be the best estimate based on
the available data.

The uncertainty associated with the estimated variable

vector θT
i =

[

xT
0|i pT

]

, containing the initial condition

and the re-estimated model parameter vector, which is
obtained from data between t0 and ti, can be evaluated
via the Fisher information matrix F i:

F i(x̂0|i, p̂i)

=
i

∑
k=0

(

∂h(x(t,θ))

∂θ

∣

∣

∣

∣

tk

)T

R−1
k

(

∂h(x(t,θ))

∂θ

∣

∣

∣

∣

tk

)

=
i

∑
k=0

(

∂h
∂x

∣

∣

∣

∣

x̂(tk)
·
[

S0(tk) Sp(tk)
]

)T

R−1
k

·

(

∂h
∂x

∣

∣

∣

∣

x̂(tk)
·
[

S0(tk) Sp(tk)
]

)

(30)

with the sensitivity matrices S0 and Sp defined in
(16). In order to calculate the actual joint covariance
matrix Qi of the estimated initial condition x̂0|i and
the re-estimated parameters p̂i the expression for the
Cramer-Rao inequality is extended as follows:

Qi(x̂0|i, p̂i) ≥

(

F i(x̂0|i, p̂i)+

[

P0 0
0 Qp

]−1
)−1

(31)

assuming that the initial estimates x̂0|0 and p̂0 are not
correlated. The current state covariance matrix P(t) is
obtained from equation (17)

P(t) =
[

S0(t) Sp(t)
]

Qi

[

S0(t) Sp(t)
]T (32)

and the matrix differential equation system for the
sensitivity matrices, respectively,

Ṡ0 = Fx(x̂,u, p̂)S0; S0(t0) = I (33)

Ṡp = Fx(x̂,u, p̂)Sp +F p(x̂,u, p̂); Sp(t0) = 0 (34)

with the Jacobian matrices (20,21).

Thus, the diagonal elements of P(t) represent the
variances of the current state estimates x̂(t), and their
respective approximate 95% confidence intervals

X(t) = x̂(t)±∆x0.95(t) (35)

can be determined with:

∆x0.95(t) ≈1.96
√

Pj j(t); j = 1, . . . ,nx (36)

When the system under consideration is operated in
fed-batch or continuous mode and the influence of the



initial condition decreases as time evolves, a possible
strategy is to define a limited-range horizon into the
past, and to consider only the data within this time
window. As time evolves, the horizon of the observer
moves forward leading to a Receding-Horizon ob-
server,

˙̂x = f (x̂,u, p̂0); x̂(t0) = x̂i−l+1|i (37)

with the new initial condition of the considered time
window obtained by

x̂i−l+1|i = arg min
xi−l+1

{ i

∑
k=i−l+1

(yk −h(x(tk)))
T R−1

k

· (yk −h(x(tk)))
}

(38)

with a fixed horizon of l preceding output instants.

An adaptive version of the Receding-Horizon observer
results, if the horizon l is adjusted such that a min-
imum confidence level in the state estimate can be
guaranteed. Based on the current estimate xi−l+1|i re-
sulting from the optimization (38), the confidence in
this estimate is approximated by

Pi−l+1|i ≥

(

i

∑
k−l+1

(

∂h
∂x

∣

∣

∣

∣

x̂(tk)

∂x̂
∂x̂0

∣

∣

∣

∣

tk

)T

R−1
k

·

(

∂h
∂x

∣

∣

∣

∣

x̂(tk)

∂x̂
∂x̂0

∣

∣

∣

∣

tk

))−1

. (39)

An approximation of the covariance matrices for hori-
zons of different lengths, assuming that the trajectory
remains the same, i.e. x̂k|i ≈ x̂(tk, x̂i−l+1|i, p̂i), is then
written analogously:

Pk|i ≈

(

i

∑̃
k=k

(

∂h
∂x

∣

∣

∣

∣

x̂(t̃k)

∂x̂
∂x̂0

∣

∣

∣

∣

tk̃

)T

R−1
k̃

·

(

∂h
∂x

∣

∣

∣

∣

x̂(t̃k)

∂x̂
∂x̂0

∣

∣

∣

∣

tk̃

))−1

. (40)

Since the matrices fulfil the inequality Pk1|i ≤ Pk2|i,
for k1 < k2, it is straightforward to determine the
minimum horizon l ∈ {1, . . . , i} in k = i− l + 1 that
fulfils the confidence condition Pk|i ≤ Pmax, i.e.,

li = min
{

l̃ | Pi−l̃+1|i ≤ Pmax

}

(41)

4. APPLICATION TO A CHO-K1 CELL
CULTURE

Both state estimation techniques are now applied to
cultures of animal cells, i.e., Chinese Hamster Ovary
(CHO-K1) cells, in a bioreactor operated in perfu-
sion mode. In this mode, the culture growth medium
(glucose, amino-acids, and metabolites such as ammo-
nium and lactate) is continuously replaced, whereas
biomass is retained within the bioreactor thanks to a
filtering device.

A dynamic model of this bioprocess has been devel-
oped by Haag et al. (2004), which consists of the
following mass balance equations for the medium con-
centrations c ∈ R

nc :

dc
dt

= ϒr(c)+(cin − c)
V̇in

V
+(c− cout(c))

V̇out

V
;

c(t0) = c0, (42)

where the first term on the right-hand side represents
production or consumption according to the consid-
ered reaction scheme, the second term represents di-
lution due to the feed flow rate and the third term
represents a correction term in the case where the har-
vesting concentration differs from the reactor concen-
tration, i.e., due to the presence of a filtering device.
The reaction term consists of the constant stoichiomet-
ric matrix ϒ ∈ R

nc×nr containing the yield coefficients
and a reaction rate vector r ∈ R

nr non-linearly depen-
dent on the medium concentrations c.

A specific structure of the reaction kinetics is assumed
(Haag et al., 2003). Therein, each component can have
a modulating effect – from limitation to inhibition – in
each considered reaction. The reaction rate of reaction
j is therefore formulated as follows:

r j(c) = r j,max

nc

∏
i=1

a ji (43)

with the modular functions 0 ≤ a ji ≤ 1 defined as

a ji =
c

sign{K∗
ji}

i

c
sign

{

K∗
ji

}

i +K∗2
ji

(44)

=



























ci

ci +K∗2
ji

(limitation), if K∗
ji > 0;

1 (neutral), if K∗
ji = 0;

K∗−2
ji

ci +K∗−2
ji

(inhibition), if K∗
ji < 0.

(45)

Four experiments were carried out. Among them,
three are used for parameter estimation and one is left
for model cross-validation. The dynamical model in-
volves 47 model parameters, which have been identi-
fied using a systematic procedure described by Haag et
al. (2004). The resulting model is briefly summarized
in Table 1 representing a pseudo-reaction scheme with
the respective actual maximum specific reaction rates.

4.1 Extended Kalman Filter

An Extended Kalman Filter allows the information
on the output and modelling errors to be taken into
account with the covariance matrices R and Qp, which
are a direct result of the identification procedure. The
measurement covariance matrix R is diagonal and of
dimension 7× 7 with the variances given in Table 2.
The symmetric parameter covariance matrix is cal-
culated from the 47 × 47 Fisher information matrix
(19 estimated stoichiometric coefficients in ϒ and 28



Table 1. Simplified reaction scheme obtained by model identification. Stoichiometric
coefficients are normalized with respect to the viable biomass in units of mmoles/109cells.

25.0Glc+4.0Gln+1.6Lac
maxµ1≈0.2 1/d
−−−−−−−−→ Xv +0.9Glu+28.9NH3

7.8Glc+0.1Gln+2.7Glu
maxµ2≈0.2 1/d
−−−−−−−−→ Xv +27.8Lac+23.9NH3

5.6Glc+1.0Gln+4.5NH3
maxµ3≈0.6 1/d
−−−−−−−−→ Xv +4.4Lac+0.5Glu

Xv
maxkd≈0.2 1/d
−−−−−−−−→ Xd

estimated modulation coefficients K∗
i j , i = 1, . . . ,4, j =

1, . . . ,7).

Table 2. Output errors estimated by model
identification.

component unit σ̂y

viable cells 106 cells/ml 2.62
non-viable cells 106 cells/ml 0.96
glucose g/l 0.30
lactate g/l 0.14
glutamate mg/l 20.1
glutamine mg/l 41.5
ammonia mg/l 14.4

The initial condition of the observer is chosen accord-
ing to the mean value of the experimental data that
have served for model identification, i.e., the measure-
ments of Experiments 2 to 4. The confidence in this
initial condition (expressed as the covariance matrix
P0) is given by the variances of these data.

Consider the case, where all states are measured at
discrete sampling times. Figure 1 shows the graphi-
cal results of state estimation based on the measure-
ment data of Experiment 1, which have not been used
for identification. In this case, the benefit from state
estimation is the continuous-time reconstruction and
prediction of all the states.

The graphical results demonstrate the efficiency of the
state estimation, which takes all available information
on the parameter uncertainties in the model and the
measurement errors into account. The measurements
mostly remain within the estimated confidence inter-
vals of the predicted states.

4.2 Full- and Receding-Horizon observer

The graphical results of the Full-Horizon observer are
shown in Figure 2.

Apparently, these results are not as good as those of
the Extended Kalman filter, especially towards the end
of the observation time.

In fact, the problem lies in the estimation of the
initial conditions of a system, which is continuously
diluted. In some sense, the history of the process,
and particularly the initial condition, is washed out,
and the sensitivity of the current state with respect
to this initial condition vanishes. Since the dilution
rate D = V̇in/V increases from 1 1/d to 4 1/d in the
considered experiments, i.e., the bioreactor volume is
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Fig. 1. Extended Kalman Filter for CHO-K1 cell cul-
ture applied on Experiment 1. Stars: Measure-
ment outputs; solid line: continuous-time state
estimation; dotted line: estimated 95% state con-
fidence interval; circle: initial state estimate.

exchanged several times a day, this washing out effect
is increased.

An appealing alternative is therefore the Receding-
Horizon observer, which considers a limited number
of measurements into the past (in this specific case, the
five most recent time instants) in order to estimate the
initial condition of the current time window through a
Gauss-Markov criterion.

The graphical results given in Figure 3 show indeed
much better results than the Full-Horizon version and
are comparable with the performance of the Extended
Kalman Filter.
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Fig. 2. Full-Horizon observer for CHO-K1 cell culture
applied on Experiment 1. Stars: Measurement
outputs; solid line: continuous-time state estima-
tion; dotted line: estimated 95% state confidence
interval; circle: initial state estimate.

5. CONCLUSION

In this paper, extensions of the Kalman filter and
receding-horizon observer are described, which take
advantage of the information on the covariance matri-
ces of the model parameter errors, the measurement
errors and the initial state estimate errors, which re-
sults from the model parameter identification proce-
dure. An application of both techniques is shown on
a real experimental case study, namely animal cell
cultures in a perfused continuous bioreactor.
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