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Abstract: In this paper, a comparison of linear and nonlinear estimators with particular
emphasis to the closed-loop properties of the resulting inferential control scheme is
presented. The concept of closed-loop “consistency” is introduced as an effective criterion
for choosing the auxiliary variables. An estimator is consistent if it guarantees low closed-
loop steady-state offset in the true unmeasured controlled variables. By means of a case
study of a high purity distillation column, a number of issues that can arise in inferential
control are emphasized, and their implications on the closed-loop stability are discussed. It
is shown that the use of some nonlinear estimators, which in general guarantee a superior
precision, may be inappropriate because of the presence of zero gains and gain inversions
that can lead the closed-loop system to instability. Moreover, in multi-input multi-output
(MIMO) systems it is possible that the estimator requires the auxiliary variables to reach
values that are not reachable by the actual plant.Copyright c© 2004 IFAC
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1. INTRODUCTION

In the process industries it is common to adopt prop-
erty estimators as a replacement to on-line analyzers,
which are very expensive (or not available for some
properties) and require significant maintenance work.
From a control point a view, on-line analyzers suf-
fer from relatively large time delays which can make
the control task difficult. Indeed, a common alterna-
tive is to use a number of auxiliary measurements
(such as temperatures, pressures, etc.) to infer the
product properties, thus building an inferential con-
trol scheme. The issue of measurement selection is of
crucial importance for the effectiveness of an estima-
tor, and it has been the subject of extensive research
in the chemical engineering community (Joseph and
Brosilow, 1978; Mejdell and Skogestad, 1991; Morari
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and Stephanopoulos, 1980; Yu and Luyben, 1987). In
particular when multiple auxiliary variables are used,
problems related to potential collinearity of these vari-
ables need to be addressed. Linear multivariate regres-
sion techniques, like Partial Least-Squares regression
(PLS) can be used to overcome these problems and
improve the robustness of the estimators as suggested
by Mejdell and Skogestad (1991).

Often property estimators are based on linear rela-
tions between the auxiliary variables and the prop-
erty to be estimated. However, several nonlinear re-
gression methods like Neural Networks and nonlinear
PLS (Baffiet al., 1999; Qin and McAvoy, 1992; Wold
et al., 1989) have been proposed, and there is therefore
a natural interest in evaluating their applicability for
building nonlinear property estimators.

The common approach is to evaluate the estimator
effectiveness in terms of precision in fitting (training
and validation) data, without addressing the implica-



tions of the estimator characteristics on the resulting
inferential control scheme. To address this problem,
Pannocchia and Brambilla (2003) introduced a new
concept of closed-loop “consistency”, which allows
one to choose the most appropriate auxiliary variables
for designing an effective estimator to be used in an
inferential control scheme. The estimator consistency
is not necessarily related to the estimator precision,
that is an estimator that is precise in fitting the data
may be inappropriate for inferential control because
it may lead to undesired steady-state offset. In the
present paper this concept is revisited in a context
of nonlinear estimators, and a critical evaluation of
linear and nonlinear estimators in terms of closed-loop
properties is presented.

2. REVIEW OF REGRESSION METHODS

PLS has been recognized as a powerful linear regres-
sion technique in many areas of process system en-
gineering (MacGregoret al., 1994; Mejdell and Sko-
gestad, 1991; Qin and Dunia, 2000; Wise and Gal-
lagher, 1996). Among the large number of nonlinear
regression methods, the attention of this paper is fo-
cused on nonlinear modifications of the PLS algo-
rithm. In particular, the quadratic PLS algorithm (Baffi
et al., 1999) is briefly reviewed in this section.

Given a vectorY ∈Rn of measured values of the prop-
erty of interest and the corresponding values of the
m auxiliary variables arranged row-wise in a matrix
X ∈ Rn×m (both centered around reference valuesys

andxs, respectively, and scaled to unity variance), the
objective of PLS is to extracta pairs of vectors called
“latent variables”ti ∈ Rn andui ∈ Rn related to each
other as follows:

ui = f (ti)+ei , i = 1,2, . . . ,a , (1)

where f (ti) depends on the particular algorithm cho-
sen, andei is the approximation error. The auxiliary
variables are related to the corresponding latent vari-
ables by a linear relation, i.e. :

ti = Xri , i = 1,2, . . . ,a , (2)

in whichr i ∈Rm is a vector of appropriate coefficients.
Linear PLS (Woldet al., 2001) uses a linear “inner”
relation f (ti) = biti , while quadratic PLS (Woldet
al., 1989) uses the following relation:

f (ti) = c1,iti +c2,it
2
i , i = 1,2, . . . ,a , (3)

in which each element oft2
i ∈ Rn is the squared value

of the corresponding element ofti . In the original
quadratic PLS (Woldet al., 1989) the coefficients
ci = [c1,i , c2,i ] are computed by least-square regression
betweenti andui . Baffi et al.(1999) proposed a differ-
ent choice forci aimed at minimizing the regression
errorei . This is achieved by iteratively modifying the
regression coefficients ofr i used to generateti from X.
This approach is shown to be superior to the original
quadratic PLS, and is chosen in the present paper.

For prediction purposes, given a vector of themauxil-
iary variables (centered and scaled)x ∈ Rm, one can
compute the corresponding vector ofx-latent vari-
ables,t ∈ R1×a:

t = xTR , (4)

in which R ∈ Rm×a = [r1, r2, . . . , ra]. This step is
followed by a quadratic “inner” relation to obtain the
vector ofy-latent variables, ˆu∈ R1×a:

û = f (t) = f (xTR) . (5)

Finally, one obtains the estimate ofy as:

ŷ = ûQT = f (xTR)QT = H (x) , (6)

in which Q ∈ R1×a is an appropriate row vector, and
H denotes the nonlinear relation betweenx andŷ.

The estimator precision in fitting a set of data is
typically expressed in terms of explained variance:

EV(a) = 100

(
1− MSE(a)

MSE(0)

)
, (7)

in which MSE is the mean square error, defined as

MSE(a) =
1
n

n

∑
i=1

(yi − ŷi(a))2 , (8)

where ŷi(a) is the predicted value ofyi obtained by
an estimator model usinga latent variables. The ex-
plained variance (often computed on a set of data not
used in training) can be used to choose the number of
latent variables,a (Wold et al., 2001).

3. CONSISTENCY OF LINEAR AND
NONLINEAR ESTIMATORS

Consider the inferential control scheme reported in
Fig. 1 in whichu ∈ Rp is the manipulated variable,
y∈ Rp is controlled variable (unmeasurable),x∈ Rm

is the auxiliary variable (measurable), ˆy ∈ Rp is the
estimate of the controlled variable, andd ∈ Rq is
the disturbance. Notice that the feedback controllerC
operates on the estimate of the controlled variable, ˆy,
and therefore it is not possible (in general) to remove
steady-state offset in the unmeasured controlled vari-
able,y. Assuming that all variables are centered (and
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Fig. 1. Inferential control scheme

scaled) around their reference value, in a neighbor-
hood of the origin, one can write:



y = Gu+Gdd (9a)

x = Gxu+Gd
xd (9b)

ŷ = H (0)+Kx = Kx , (9c)

in which

• G∈ Rp×p andGx ∈ Rm×p are the gain matrices
from the manipulated variable to the controlled
and the auxiliary variables, respectively;

• Gd ∈ Rp×q andGd
x ∈ Rm×q are the gain matrices

from the disturbance to the controlled and the
auxiliary variables, respectively;

• K ∈ Rp×m is the Jacobian ofH evaluated at the
origin, i.e.

Ki, j =
∂Hi

∂x j

∣∣∣∣
x=0

, i = 1, . . . , p, j = 1, . . . ,m .

(10)
Given the setpointr, and assuming that the controller
C has integral action, at steady state one can write

r = ŷ = Kx = KGxu+KGd
xd ,

from which the corresponding input is

u = (KGx)−1(r−KGd
xd) .

The steady-state closed-loop offset can be written as

eCL = r−y =
[
I −G(KGx)

−1
]

r+[
G(KGx)

−1KGd
x −Gd

]
d . (11)

For convenience of notation, letεr and εd be the
following matrices

εr = I −G(KGx)
−1 (12a)

εd = G(KGx)
−1KGd

x −Gd . (12b)

The steady-state offset is given byeCL = εr r + εdd.
Thus,εr andεd can be regarded as the gain matrices
from the setpoint reference and the disturbance, re-
spectively, to the steady-state offset. Therefore, in or-
der for an inferential control scheme to guarantee low
closed-loop offset, it is desirable to keep some norm of
εr andεd as low as possible. Such a property of an es-
timator is referred to as “consistency”. It is important
to recognize that consistency is not necessarily related
to the estimator precision. As an example, consider
the case in which the number of auxiliary variables
equals the number of controlled variables, i.e.m= p.
In such case, the matrixK is square and, hence,εd is
independent ofK, which implies that consistency for
disturbance rejection is independent of the estimator
model. In fact, in the presence of a disturbance the
control system adjusts thep manipulated variables to
bring the p auxiliary variables to the corresponding
nominal reference value. Hence, in such cases the es-
timator consistency is only dependent on the choice of
the auxiliary variables, and it is often the case that aux-
iliary variables that are not the most precise are indeed
the most appropriate for guaranteeing low closed-loop
offset.

4. CASE STUDY

As a case study we choose a high-purity two-product
six-component distillation column, simulated by means
of Aspen Plus 11.1. For space limitations, only a
brief description of the case study is presented in this
paper. More details can be found in (Leoni, 2003).
Nominal compositions of feed and products are re-
ported in Table 1, and main operating parameters
in nominal conditions are reported in Table 2. The

Table 1. Nominal composition of feed and
products (mole basis)

ID Name Feed Top Bottom

LLK 1 i-butane 0.05 0.111 0.000
LLK 2 2-methylpentane 0.10 0.223 0.000
LK n-hexane 0.30 0.661 0.005
HK 2,2-dimethylpentane 0.30 0.005 0.541
HHK1 2,3-dimethylpentane 0.15 0.000 0.272
HHK2 2,2-dimethyleptane 0.10 0.000 0.182

column consists of 60 ideal stages, total condenser
(stage no. 1) and Kettle reboiler, and the saturated
liquid feed enters at the 32nd stage. In order to build

Table 2. Nominal operating parameters

Parameter ID Unit Value

Feed rate F kmol/hr 100.0
Distillate rate D kmol/hr 44.95
Reboiler duty Q MMkcal/hr 2.035
Top reflux ratio R – 4.99
Condenser pressure ptop atm 1.1
Reboiler pressure pbot atm 1.4

and compare several property estimators, a training
database of 61 runs is obtained by varying the main
operating parameters one-by-one in a wide range, as
briefly described in Table 3. The data used are from
open-loop tests. The possibility of using closed-loop
data (Macgregoret al., 1991), that is with a temper-
ature controller on a tray, is appropriate only if the
tray temperature represents a “consistent” auxiliary
variable. (Moreover, data should be also collected by
varying the setpoint of this temperature controller, oth-
erwise all data correspond to approximately the same
temperature, because of the feedback controller). If
this is not the case, and it is not possible to move
the temperature controller to a different tray (Semino
and Brambilla, 1996), it may be convenient to remove
the temperature controller and collect only open-loop
data.

Table 3. Training set synopsis

Case Runs Run ID Range

Base 1 1 –
VaryingD 10 2÷11 (0.7÷1.3)Dnom

VaryingQ 10 12÷21 (0.65÷1.3)Qnom

VaryingF 10 22÷31 (0.7÷1.3)Fnom

Varying feed comp. 20 32÷51 –
Varying p 10 52÷61 (0.8÷1.32)pnom



4.1 SISO case

First, a SISO case of top product HK mole fraction
control by manipulating the distillate rate is consid-
ered. Several estimators are designed by choosing the
condenser pressure and one tray temperature as auxil-
iary variables. One latent variable is used by each es-
timator. In Fig. 2 the explained variance for linear and
quadratic PLS estimators is plottedvsthe tray number
whose temperature is auxiliary variable. From these

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stage (n°)

E
V

(1
)

Lin. PLS
Quad. PLS

Fig. 2. Explained variance for top product estimators

results it appears that the most precise tray location
is between the 8th and the 12th stage for the linear
estimator, while it is between the 5th and the 10th
stage for the nonlinear estimator. In Fig. 3 the most
precise linear and nonlinear estimators (i.e. those with
the highest explained variance) are compared in fitting
the data (see also Table 3 for run IDs).
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Fig. 3. Data fitting for top product estimators

From a consistency point of view, four normalized
disturbances are considered:

d1 =
∆F

Fnom
, d2 =

∆
(

LK
HK

)(
LK
HK

)
nom

,

d3 =
∆
( LLK 1+LLK 2

HHK1+HHK2

)( LLK 1+LLK 2
HHK1+HHK2

)
nom

, d4 =
∆P

Pnom
.

Using the training data to compute the gain matri-
ces in (9) and numerical differentiation for comput-
ing the partial derivatives that defineKi, j in (10), the

disturbance consistency matrixεd is computed from
(12b). Given the significant nonlinear behavior of the
process, positive and negative variations of the distur-
bances are treated separately, thus building two con-
sistency matricesε+

d andε
−
d , respectively. Then, the

following scalar parameter is defined as a measure of
closed-loop consistency for all disturbances:

Φd =

∥∥[ε+
d , ε

−
d ]

∥∥
2

2dimd
. (13)

In Fig. 4 the value ofΦd for linear and nonlinear esti-
mators is reportedvs the tray number whose tempera-
ture is auxiliary variable. From these results, it appears
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Fig. 4. Consistency parameterΦd for top product
estimators

that the most consistent tray location is between the
12th and 18th stage for the linear estimator, while it
is between the 6th to the 25th stage for the nonlinear
estimator.

After this preliminary analysis, the following four es-
timators are compared in closed-loop rejection of the
disturbances (using the Aspen Plus rigorous model):

• L0: most precise linear estimator.
• NL0: most precise nonlinear estimator.
• Ld: most consistent linear estimator.
• NLd: most consistent nonlinear estimator.

Main characteristics of these estimators are reported
in Table 4. In Table 5 the closed-loop offsets obtained

Table 4. Top product estimators

Est. ID Tray EV(1)% Φd ·103

L0 10 57.3 34.4
NL0 5 99.1 5.6
Ld 15 53.2 27.9
NLd 7 98.6 4.0

with each estimator in the presence of disturbances
are reported. The first row (denoted with OL) refers
to the open-loop offset. From these results, it appears
that the estimators designed for consistency guarantee
a significantly lower steady-state offset with respect to
those designed for precision. On average the nonlinear
estimators guarantee a lower offset than the linear
estimators, even though for some disturbances (like



Table 5. Top product open-loop and closed-loop offset (multiplied by 103)

Est. ID d1 d2 d3 d4 Mean
+0.1 −0.1 +0.1 −0.1 +0.1 −0.1 +0.1 −0.08

OL 3.9 -94.8 3.8 -32.7 3.6 -19.0 -0.3 0.5 19.9
L0 -1.5 1.3 -0.1 0.1 -0.7 0.7 4.9 -33.6 5.4

NL0 -2.2 2.0 0.6 -0.7 -2.0 2.1 -0.6 2.0 1.5
Ld -1.1 1.2 -0.3 0.4 -0.4 0.4 4. -20.7 3.7

NLd -1.8 1.6 0.2 -0.2 -1.2 1.3 -0.3 1.3 1.0

d1 andd3) the linear estimatorLd works better than
the nonlinear oneNLd.

Despite these better precision and consistency prop-
erties, nonlinear estimators can exhibit a potentially
harmful behavior, which arises from a non-monotonic
relation between the auxiliary variables (in this case
the tray temperature) and the controlled variable. As
an example, Fig. 5 shows the top product HK mole
fraction estimate obtained by the nonlinear estimator
using the 16th stage temperaturevs the corresponding
temperature. It is clear that in such case if the setpoint
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Fig. 5. Non-monotonic behavior of top product HK
mole fraction estimate

is changed from 0.005 to 0.003, the control system
will try to reduce the HK mole fraction estimate to
the new setpoint by decreasing the distillate rate (and
hence reducing the tray temperature). However, after
the tray temperature reaches approximately 73.8oC,
the HK mole fraction estimate increases again and
the control system will further reduce the distillate
rate ultimately leading to a potential closed-loop in-
stability. Notice that this phenomenon can also oc-
cur in the presence of disturbances on the operating
pressure, which move the curve in Fig. 5 vertically
(up or down). This severe problem can occur with
any nonlinear estimator which may have “zero gain”
points and “gain inversions”, while it cannot occur
with linear estimators. In particular, this is likely to
occurs with Neural Network models as criticized by
Turner and Guiver (2002), who suggested an alter-
native “Bounded Derivative Network” model that is
guaranteed to have monotonic relations between the
auxiliary variables and the controlled variable.

Table 6. Top and bottom product estimators

Est. ID Top product Bottom product Φd

Tray EV(1)% Tray EV(1)%

L0 10 57.3 50 56.6 0.126
NL0 5 99.1 55 97.7 0.611
Ld 42 5.6 15 3.3 0.099
NLd 13 94.2 43 83.8 0.018

4.2 MIMO case

Next, the MIMO case of top product HK and bottom
product LK mole fraction control by manipulating the
distillate rate and the reboiler duty is considered. For
each property several estimators are designed by us-
ing the condenser pressure and one tray temperature
as auxiliary variables. When addressing the problem
from a consistency point of view one needs to recog-
nize the following important observations:

• For obvious control reasons, top and bottom
product estimators are not allowed to use the
same tray temperature as auxiliary variable.

• Closed-loop consistency depends on both infer-
ential control loops, so that all possible pairs of
top and bottom product single temperature esti-
mators need to be tested.

• Any estimator will be consistent for disturbances
on the feed flow rate. In fact, if the feed flow
rate changes and both product estimates are con-
trolled, the steady-state temperature profile of
the column will be the same as in the nominal
case because both distillate rate and reboiler duty
change proportionally to the feed-rate change
(actually only pressure drop effects remain).

Hence, the disturbanced1 is not considered when
computing the consistency matrixεd and the corre-
sponding scalar parameterΦd defined in (13).

Using the same rationale (best precision and best con-
sistency) as for the SISO case, four (linear and non-
linear) estimators are designed and compared. The
estimator characteristics are reported in Table 6. In
Table 7 the closed-loop offsets of each product ob-
tained by using different estimators in the presence
of disturbances (not involving the operating pressure)
are reported. From these results, similarly to the SISO
case, it appears that the design of estimators based on
consistency guarantees a lower closed-loop offset in
the presence of disturbances. It is also interesting to
notice that in this case the use of a nonlinear estimator
model does not appear to be particularly appropriate.
Furthermore, when disturbances in the operating pres-



Table 7. Top and bottom product open-loop and closed-loop offsets (multiplied by 103)

Est. ID d2 = +0.1 d2 =−0.1 d3 = +0.1 d3 =−0.1 Mean
Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom

OL 3.8 -22.3 -37.7 2.3 3.7 -13.4 -19.0 2.1 16.1 10.0
L0 -0.2 0.4 0.2 -0.5 -0.6 0.7 0.7 -0.6 0.4 0.6

NL0 3.0 2.2 -0.1 1.2 -0.6 2.3 2.4 -0.8 1.5 1.6
Ld -0.3 0.4 0.2 -0.6 -0.3 0.3 0.3 -0.3 0.3 0.4

NLd 0.1 0.5 0.3 -0.6 -0.2 0.4 0.6 -0.3 0.3 0.4

Table 8. Estimator behavior for pressure
disturbance (P = 1.012 atm)

Est. ID Top Bottom
TOL TS offset TOL TS offset

L0 68.9 72.5 - 88.7 91.1 -
NL0 68.4 70.2 - 90.1 90.7 -
Ld 85.9 88.3 - 71.4 73.9 -

NLd 70.7 70.3 3.8·10−3 86.3 86.8 3.2·10−3

sure are considered, both linear and nonlinear estima-
tors may lead the closed-loop system to instability. In
fact, Table 8 shows results obtained for the case of
-8 % pressure change. For each estimator the open-
loop tray temperature and the corresponding temper-
ature required by the estimator to remove offset in
the controlled variable estimates are reported. For all
estimators, with the exception ofNLd the new “target”
temperatures of the two trays cannot be reached si-
multaneously, and hence the control system will keep
increasing the distillate rate and decreasing the re-
boiler duty, leading the closed-loop system to potential
instability.

5. CONCLUSIONS

In this paper, a critical comparison of linear and non-
linear estimators in inferential control has been pre-
sented. The emphasis of the present work has been
devoted to investigate the implications of the esti-
mator design on inferential closed-loop systems, by
revisiting the concept and the definition of “consis-
tency” (Pannocchia and Brambilla, 2003) in the con-
text of nonlinear estimators. It has been shown that
the use of the most “consistent” auxiliary variables
guarantees a lower steady-state offset than the use of
the most “precise” ones, for both linear and nonlinear
estimators. Moreover, severe problems that can occur
in closed-loop have been discussed.

• When using some nonlinear estimators it is pos-
sible to have zero gains and gain inversions,
which can make the closed loop unstable. In par-
ticular, this possibility is likely to occur when us-
ing Neural Networks (Turner and Guiver, 2002).

• In MIMO systems it is possible that, in order
to remove offset, the estimator requires the aux-
iliary variables to reach values that cannot be
reached by the actual plant. That may generate
closed-loop instability. In particular, for high pu-
rity distillation columns this phenomenon can
occur when disturbances in the operating pres-

sure affect the system. Additional auxiliary vari-
ables, as the mole ratioL/V, can be used to
improve the closed-loop response to such distur-
bances (Pastoreet al., 2004).
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