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Abstract: In this paper, a comparison of linear and nonlinear estimators with particular
emphasis to the closed-loop properties of the resulting inferential control scheme is
presented. The concept of closed-loop “consistency” is introduced as an effective criterion
for choosing the auxiliary variables. An estimator is consistent if it guarantees low closed-
loop steady-state offset in the true unmeasured controlled variables. By means of a case
study of a high purity distillation column, a number of issues that can arise in inferential
control are emphasized, and their implications on the closed-loop stability are discussed. It
is shown that the use of some nonlinear estimators, which in general guarantee a superior
precision, may be inappropriate because of the presence of zero gains and gain inversions
that can lead the closed-loop system to instability. Moreover, in multi-input multi-output
(MIMO) systems it is possible that the estimator requires the auxiliary variables to reach
values that are not reachable by the actual p@apyright(© 2004 IFAC
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1. INTRODUCTION and Stephanopoulos, 1980; Yu and Luyben, 1987). In
particular when multiple auxiliary variables are used,
problems related to potential collinearity of these vari-
‘ables need to be addressed. Linear multivariate regres-
sion techniques, like Partial Least-Squares regression
(PLS) can be used to overcome these problems and
improve the robustness of the estimators as suggested
by Mejdell and Skogestad (1991).

Often property estimators are based on linear rela-

In the process industries it is common to adopt prop-
erty estimators as a replacement to on-line analyzers
which are very expensive (or not available for some
properties) and require significant maintenance work.
From a control point a view, on-line analyzers suf-
fer from relatively large time delays which can make
the control task difficult. Indeed, a common alterna-

tive is to use a number of auxiliary measurements

(such as temperatures, pressures, etc.) to infer thdiOnS between the auxiliary variables and the prop-
product properties, thus building an inferential con- erty to be estimated. However, several nonlinear re-

trol scheme. The issue of measurement selection is of'€SSion methods like Neural Networks and nonlinear
crucial importance for the effectiveness of an estima- PLS (Baffiet al, 1999; Qin and McAvoy, 199_2; Wold
tor, and it has been the subject of extensive researctf! al» 1989) have been proposed, and there is therefore

in the chemical engineering community (Joseph and @ natural interest in evaluating their applicability for

Brosilow, 1978; Mejdell and Skogestad, 1991: Morari Puilding nonlinear property estimators. .
The common approach is to evaluate the estimator
effectiveness in terms of precision in fitting (training

1 Corresponding author. Email: g.pannocchia@ing.unipi.it, Fax: and validation) data, without addressing the implica-
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tions of the estimator characteristics on the resulting For prediction purposes, given a vector of thauxil-
inferential control scheme. To address this problem, iary variables (centered and scaled¥ R™, one can
Pannocchia and Brambilla (2003) introduced a new compute the corresponding vector xfatent vari-
concept of closed-loop “consistency”, which allows ablest € R1*2:

one to choose the most appropriate auxiliary variables t=x"R, 4)
for designing an effective estimator to be used in an i, which R ¢ R™2 — 1, I2, ..., ra). This step is
inferential control scheme. The estimator consistency s|1owed by a quadratic “inner” relation to obtain the
is not necessarily related to the estimator precision, yector ofy-latent variablesy & R1*2:

that is an estimator that is precise in fitting the data

may be inappropriate for inferential control because a=ft)=fx'R). 5)
it may lead to undesired steady-state offset. In the gina|ly, one obtains the estimateyés:

present paper this concept is revisited in a context

o aAT TovAT
of nonlinear estimators, and a critical evaluation of y=0Q =f(x RQ =7(x), (6)
linear and nonlinear estimators in terms of closed-loop jn which Q € R1*@ is an appropriate row vector, and
properties is presented. 2 denotes the nonlinear relation betweeandy.

The estimator precision in fitting a set of data is
typically expressed in terms of explained variance:

MSE(a)) @
PLS has been recognized as a powerful linear regres- MSE(0) )
sion technique in many areas of process system enin which MSE is the mean square error, defined as
gineering (MacGregoet al,, 1994; Mejdell and Sko- 10

gestad, 1991; Qin and Dunia, 2000; Wise and Gal- MSE(a) = = Zl(yi —yi(a))?, (8)
lagher, 1996). Among the large number of nonlinear ni<

regression methods, the attention of this paper is fo-whereyi(a) is the predicted value of; obtained by
cused on nonlinear modifications of the PLS algo- an estimator model using latent variables. The ex-
rithm. In particular, the quadratic PLS algorithm (Baffi pjained variance (often computed on a set of data not
et al, 1999) is briefly reviewed in this section. used in training) can be used to choose the number of
Given a vectolf € R" of measured values of the prop- latent variablesa (Wold et al., 2001).

erty of interest and the corresponding values of the
m auxiliary variables arranged row-wise in a matrix
X € R™™ (both centered around reference valygs
andx®, respectively, and scaled to unity variance), the
objective of PLS is to extra@ pairs of vectors called
“latent variables't; € R" andu; € R" related to each

other as follows: Consider the inferential control scheme reported in
u=f(t)+e, i=12....a, (1) Fig. 1 i.n whichu € RP ?s the manipulated variable,

. ) y € RP is controlled variable (unmeasurablg): R™
where f (t;) depends on the particular algorithm cho- is the auxiliary variable (measurablg)cRP is the
sen, andg is the approximation error. The auxiliary estimate of the controlled variable, amde R is
variables are related to the corresponding latent vari-ine disturbance. Notice that the feedback contraller
ables by a linear relation, i.e. : operates on the estimate of the controlled variaple,

t = Xr;, i=1,2,...,a, 2) and therefore it is not possible (in general) to remove
steady-state offset in the unmeasured controlled vari-
able,y. Assuming that all variables are centered (and

2. REVIEW OF REGRESSION METHODS

EV(a) = 100(1

3. CONSISTENCY OF LINEAR AND
NONLINEAR ESTIMATORS

in whichr; € RMis a vector of appropriate coefficients.
Linear PLS (Woldet al, 2001) uses a linear “inner”
relation f(t;) = bitj, while quadratic PLS (Woldet

al., 1989) uses the following relation: d

f(t)=cuti+cit?,  i=12...,.a, (3)

in which each element af € R" is the squared value
of the corresponding element ¢f In the original -
guadratic PLS (Woldet al, 1989) the coefficients

Ci = [C1, C2,i] are computed by least-square regression
betweert; andu;. Baffi et al. (1999) proposed a differ-

ent choice forc; aimed at minimizing the regression
errorg. This is achieved by iteratively modifying the ~Fig. 1. Inferential control scheme

regression coefficients of used to generatefrom X.

This approach is shown to be superior to the original scaled) around their reference value, in a neighbor-
guadratic PLS, and is chosen in the present paper.  hood of the origin, one can write:

]




y=Gu+ G (9a) 4. CASE STUDY

x = Gyu+Gyd (9b)  As a case study we choose a high-purity two-product
y=(0)+Kx=Kx, (9¢) six-component distillation column, simulated by means
of Aspen Plus 11.1. For space limitations, only a
brief description of the case study is presented in this
paper. More details can be found in (Leoni, 2003).
Nominal compositions of feed and products are re-
ported in Table 1, and main operating parameters
in nominal conditions are reported in Table 2. The

in which
e G RP*P andG, € R™P are the gain matrices
from the manipulated variable to the controlled
and the auxiliary variables, respectively;
e GYc RP*9andG{ € R™ Y are the gain matrices
from the disturbance to the controlled and the

auxiliary variables, respectively; Table 1. Nominal composition of feed and
e K ¢ RP*Mis the Jacobian of# evaluated at the products (mole basis)
origin, i.e.
O ID Name Feed Top Bottom
4] . -
Kij=—>-1 > I=L..p J=1...m LLK;  i-butane 005 0111  0.000
I 1x=0 (10) LLK,  2-methylpentane 0.10 0.223 0.000
Gi th tooint d . that th troll LK n-hexane 0.30 0.661 0.005
iven the setpoint, and assuming that tne controfler .« 5 5 gimethylpentane  0.30  0.005  0.541
C has integral action, at steady state one can write HHK; 23-dimethylpentane 0.15 0.000  0.272

. HHK,  22-dimethyleptane  0.10 0.000  0.182
r=y=Kx=KGu-+KGid, 2 yep

from which the corresponding input is column consists of 60 ideal stages, total condenser
U= (KGX)‘l(r—Kfod). (stage no. 1) and Kettle reboiler, and the saturated

liquid feed enters at the 32nd stage. In order to build
The steady-state closed-loop offset can be written as _ _
Table 2. Nominal operating parameters

ecL=r-y=I-G(KG) | r+

Parameter ID Unit Value
~1p ~d d

[G (KGx) KGx -G } d. (11) Feed rate F kmol/hr 100.0
. . Distillate rate D kmol/hr 44.95
For convenience of notation, let and &g be the Reboiler duty Q  MMkcalhr  2.035
following matrices Top reflux ratio R - 4.99
1 Condenser pressure prop atm 11
& =1-G(KGy) (12a) Reboiler pressure  ppor atm 1.4

g9 =G(KGy) 1KGI -G . (12b)

and compare several property estimators, a training
database of 61 runs is obtained by varying the main
operating parameters one-by-one in a wide range, as
briefly described in Table 3. The data used are from
open-loop tests. The possibility of using closed-loop
data (Macgregoet al, 1991), that is with a temper-
ature controller on a tray, is appropriate only if the

The steady-state offset is given by = &r + &4d.

Thus, & andegy can be regarded as the gain matrices
from the setpoint reference and the disturbance, re-
spectively, to the steady-state offset. Therefore, in or-
der for an inferential control scheme to guarantee low
closed-loop offset, itis desirable to keep some norm of

& andeg as low as possible. Such a property of an es- tray temperature represents a “consistent” auxiliary

timator is referred to as “consistency”. It is important .

to recognize that consistency is not necessaril relatedva”able' (Moreover, data should be also collected by
gni: . Y Y Tek varying the setpoint of this temperature controller, oth-

to the estimator precision. As an example, consider

the case in which the number of auxiliary variables erwise all data correspond to approximately the same

equals the number of controlled variablesy' temperature, because of the feedback controller). If
q . » TB=P. this is not the case, and it is not possible to move

In such case, the matrik is square and, hencey is . .

) L . the temperature controller to a different tray (Semino

independent oK, which implies that consistency for

disturbance rejection is independent of the estimatorand Brambilla, 1996), it may be convenient to remove
1€ P : the temperature controller and collect only open-loop
model. In fact, in the presence of a disturbance the

control system adjusts th@manipulated variables to data.

bring the p auxiliary variables to the corresponding Table 3. Training set synopsis
nominal reference value. Hence, in such cases the es-
timator consistency is only dependent on the choice of
the auxiliary variables, and it is often the case that aux- Base 1 1 -

Case Runs RunID Range

iliary variables that are not the most precise are indeed VaryingD 10 2+11 (0.7~ 1.3)Dnom
the most appropriate for guaranteeing low closed-loop /29 < 10 1221 (0.65+1.3)Qnom
pprop 9 g p Varying F 10 22+-31 (0.7+1.3)Fhom

offset. Varying feed comp. 20 3251 -
Varying p 10 52+-61 (0.8+1.32)pnom




4.1 SISO case disturbance consistency matréy is computed from
. , (12b). Given the significant nonlinear behavior of the
First, a SISO case of top product HK mole fraction process, positive and negative variations of the distur-

control by manipulating the disti!late rate is cor)sid- bances are treated separately, thus building two con-
ered. Several estimators are designed by choosing th%istency matricesd* ande; , respectively. Then, the

ponden_ser pressure and one_tray tgmperature as auX'lfollowing scalar parameter is defined as a measure of
ary varlable_s. One |atent _varlable_ls used b_y each es'closed—loop consistency for all disturbances:
timator. In Fig. 2 the explained variance for linear and

guadratic PLS estimators is plottegthe tray number H [8d+7 &4 ||2

whose temperature is auxiliary variable. From these 2dimd

1 ‘ ‘ ‘ ‘ In Fig. 4 the value ofby for linear and nonlinear esti-
--- Lin. PLS i

 Guad PLS matqrs is r_e_ported_sthe tray number whose t_empera-
ture is auxiliary variable. From these results, it appears

- ~-- Lin. PLS
—— Quadr. PLS o\
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Fig. 2. Explained variance for top product estimators
0

results it appears that the most precise tray location ° Stage ()
is between the 8th and the 12th stage for the linear )

estimator, while it is between the 5th and the 10th Fig- 4. Consistency paramet&ry for top product
stage for the nonlinear estimator. In Fig. 3 the most estimators

precise linear and nonlinear estimators (i.e. those with
the highest explained variance) are compared in fitting
the data (see also Table 3 for run IDs).

40 50 60

that the most consistent tray location is between the
12th and 18th stage for the linear estimator, while it
is between the 6th to the 25th stage for the nonlinear

03 i estimator.
0.25¢ _ 7 Lin PLS estimate | After this preliminary analysis, the following four es-
« — Quad. PLS estimate

timators are compared in closed-loop rejection of the
disturbances (using the Aspen Plus rigorous model):

e Lo: most precise linear estimator.

e NLo: most precise nonlinear estimator.

e L4: most consistent linear estimator.

e NL4: most consistent nonlinear estimator.
Main characteristics of these estimators are reported
in Table 4. In Table 5 the closed-loop offsets obtained

Top product HK mole fraction

]
©
o
a

Table 4. Top product estimators

1
o
i

10 20 30 40 50 60

Run ID
Est.ID Tray EV(1)% ®q4-10°
Fig. 3. Data fitting for top product estimators Lo 10 57.3 34
NLo 5 99.1 56
From a consistency point of view, four normalized Lq 15 53.2 21
disturbances are considered: NLg 7 98.6 40
AF A(ES) _ _ _ _
di = F = with each estimator in the presence of disturbances
nom (W) nom are reported. The first row (denoted with OL) refers
ARG AP to the open-loop offset. From these results, it appears
ds = LLK1+LLK, Y P that the estimators designed for consistency guarantee
(HHK1+HHK2)n0m hom

a significantly lower steady-state offset with respect to
Using the training data to compute the gain matri- those designed for precision. On average the nonlinear
ces in (9) and numerical differentiation for comput- estimators guarantee a lower offset than the linear
ing the partial derivatives that defitg j in (10), the estimators, even though for some disturbances (like



Table 5. Top product open-loop and closed-loop offset (multiplied By 10

Est. ID dy dy ds ds Mean
+01 -01 +01 -01 +01 -01 +01 -0.08

oL 3.9 -94.8 3.8 -32.7 3.6 -19.0 -0.3 0.5 .99

Lo -1.5 1.3 -0.1 0.1 -0.7 0.7 4.9 -336 4
NLg -2.2 2.0 0.6 -0.7 -2.0 21 -0.6 2.0 Al
Ly -1.1 1.2 -0.3 0.4 -0.4 0.4 4. -20.7 .13

NLg -1.8 1.6 0.2 -0.2 -1.2 13 -0.3 13 .aL

d; andds) the linear estimatoty works better than Table 6. Top and bottom product estimators
the nonlinear on&lLy.

Despite these better precision and consistency prop-
erties, nonlinear estimators can exhibit a potentially

Est. ID Top product Bottom product dq4
Tray EV(1)% Tray EV(1)%

harmful behavior, which arises from a non-monotonic kIOLO 150 g’;f gg g‘g’s g'éfi
relation between the auxiliary variables (in t.hIS case Ly 42 56 15 33 0.099
the tray temperature) and the controlled variable. As NLg 13 94.2 43 83.8 0.018

an example, Fig. 5 shows the top product HK mole
fraptmn estimate obtained by the nonlinear est|mator4_2 MIMO case
using the 16th stage temperatwsgthe corresponding

temperature. Itis clear that in such case if the setpointNext, the MIMO case of top product HK and bottom
product LK mole fraction control by manipulating the
5 distillate rate and the reboiler duty is considered. For
each property several estimators are designed by us-
ing the condenser pressure and one tray temperature
as auxiliary variables. When addressing the problem
from a consistency point of view one needs to recog-
nize the following important observations:

e For obvious control reasons, top and bottom
product estimators are not allowed to use the
same tray temperature as auxiliary variable.

e Closed-loop consistency depends on both infer-
ential control loops, so that all possible pairs of
top and bottom product single temperature esti-

‘ ‘ ‘ ‘ mators need to be tested.
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Temperature (°C) o Any estimator will be consistent for disturbances
on the feed flow rate. In fact, if the feed flow
Fig. 5. Non-monotonic behavior of top product HK rate changes and both product estimates are con-
mole fraction estimate trolled, the steady-state temperature profile of

the column will be the same as in the nominal

is changed from 0.005 to 0.003, the control system case because both distillate rate and reboiler duty

will try to reduce the HK mole fraction estimate to change proportionally to the feed-rate change
the new setpoint by decreasing the distillate rate (and ~ (actually only pressure drop effects remain).
hence reducing the tray temperature). However, afterHence, the disturbance; is not considered when
the tray temperature reaches approximately %3.8 computing the consistency matreg and the corre-
the HK mole fraction estimate increases again and sponding scalar paramet®g defined in (13).

the control system will further reduce the distillate Using the same rationale (best precision and best con-
rate ultimately leading to a potential closed-loop in- sistency) as for the SISO case, four (linear and non-
stability. Notice that this phenomenon can also oc- linear) estimators are designed and compared. The
cur in the presence of disturbances on the operatingestimator characteristics are reported in Table 6. In
pressure, which move the curve in Fig. 5 vertically Table 7 the closed-loop offsets of each product ob-
(up or down). This severe problem can occur with tained by using different estimators in the presence
any nonlinear estimator which may have “zero gain” of disturbances (not involving the operating pressure)
points and “gain inversions”, while it cannot occur are reported. From these results, similarly to the SISO
with linear estimators. In particular, this is likely to case, it appears that the design of estimators based on
occurs with Neural Network models as criticized by consistency guarantees a lower closed-loop offset in
Turner and Guiver (2002), who suggested an alter-the presence of disturbances. It is also interesting to
native “Bounded Derivative Network” model that is notice that in this case the use of a nonlinear estimator
guaranteed to have monotonic relations between themodel does not appear to be particularly appropriate.
auxiliary variables and the controlled variable. Furthermore, when disturbances in the operating pres-



Table 7. Top and bottom product open-loop and closed-loop offsets (multiplied®py 10

Est. ID d; =+0.1 dr=-01 dz3 =+0.1 dz3=-01 Mean
Top Bottom Top Bottom Top Bottom Top Bottom Top  Bottom
oL 38 223  -37.7 2.3 37  -134  -19.0 21 .16 100
Lo 0.2 0.4 0.2 05 -06 0.7 0.7 06 4O 06
NL, 3.0 2.2 -0.1 1.2 -0.6 2.3 2.4 -08 & 16
Lg 0.3 0.4 0.2 06 -03 0.3 0.3 03 D 04
Ny 01 0.5 0.3 -06  -0.2 0.4 0.6 03 D 04
Table 8. Estimator behavior for pressure sure affect the system. Additional auxiliary vari-
disturbanceR = 1.012 atm) ables, as the mole ratib/V, can be used to
improve the closed-loop response to such distur-
Est. 1D Top Bottom bances (Pastort al, 2004).
ToL Ts offset ToL Ts offset
Lo 68.9 725 - 88.7 911 -
NLo 68.4 70.2 - 90.1 90.7 - REFERENCES
Lg 859 88.3 - 71.4 739 -
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