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Abstract: In this work, the integration of ARMA filters into the multivariate sta-
tistical process control (MSPC) framework is presented to improve the monitoring
of large-scale industrial processes. As demonstrated in the paper, such filters can
remove auto-correlation from the monitored variables to avoid the production of
false alarms. This is exemplified by application studies to a benchmark process
from the literature.
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1. INTRODUCTION

Modern industrial processes often present a large
number of highly correlated process variables,
which leads to huge amounts of process data to
be analysed. MSPC methods are known to be
effective in detecting and diagnosing abnormal
behaviour in the above circumstances (MacGregor
and Kourti, 1995; Wise and Gallagher, 1996). One
of the most popular MSPC methods is principal
component analysis (PCA), which aims to reveal
linear relationships between the process variables
by defining a reduced set of score variables. Using
these variables, univariate statistics can be gener-
ated for on-line process monitoring.

The application of PCA, however, is based on the
assumption that the process variables are station-
ary and normally distributed. In practice, this
is rarely satisfied, as such processes are driven
by random noise and disturbances. In addition,
regulatory controller present feedback to the in-
put variables, so that the impact of disturbances
propagates through to both the input and out-
put variables (MacGregor et al., 1991; Kruger

et al., 2001). Thus, the process variables move
around a steady state condition and exhibit some
degree of auto-correlation.

For monitoring auto-correlated process variables,
(Ku et al., 1995) proposed the use of dynamic
PCA (DPCA) for which time-series structures
are incorporated into the PCA analysis. (Ku et

al., 1995) argued that: Directly applying PCA

on a data matrix actually constructs a linear

static model. When the data contains dynamic

information, applying PCA on the data will not

reveal the exact relations between the variables,

rather a linear static approximation. It was stated
further that: The score variables will be auto-

correlated and possibly cross-correlated .

The contributions of this paper are as follows.
Firstly, it is argued that if the process variables
are highly correlated, the score variables can show
a stronger degree of auto-correlation. Secondly,
strongly auto-correlated score variables may lead
to the production of false alarms that invalidate
the on-line monitoring approach. Thirdly, the ap-
plication of ARMA filters is proposed to remove
auto-correlation from the score variables. The



above findings are demonstrated using a bench-
mark example from the literature.

It should be noted that ARMA filters could also be
applied directly to the recorded process variables.
As industrial processes often present large variable
sets, however, the application of ARMA filters
to these variables may be practically difficult.
Moreover, pre-filtering these variables may change
the relationships between them, implying that
PCA may be less successful in defining a much
reduced set of score variables.

2. PROCESS MONITORING USING PCA

The application of PCA involves the construction
of a reduced set of score variables that can de-
scribe significant variation of the process. The val-
ues of these variables can be obtained as follows:

t = PT z, (1)

where t ∈ Rn is a vector storing the values of the
scores variables, P ∈ RN×n is a transformation
matrix, z ∈ RN is a vector in which the values of
the process variables are stored and N , n ∈ N are
the number of process variables and retained score
variables, respectively. A more detailed analysis of
PCA may be found in (Wold et al., 1987).

2.1 Dynamic PCA

To accommodate auto-correlation of the process
variables, (Ku et al., 1995) showed that a linear
time-series structure could be incorporated into
the PCA analysis. This leads to an arrangement
of the process variables to form an autoregressive
with external input variables (ARX) model struc-
ture:

z∗
T

k =
(
zTk · · · zTk−m

)
, (2)

where z∗
T

k is an augmented set of variables, repre-
senting an ARX model structure of order m. Uti-
lizing this “extended” set of process variables, a
PCA analysis can then be carried out as described
above. On the basis of the recommendations by
(Zwick and Velicer, 1986), (Ku et al., 1995) pro-
posed the use of parallel analysis and a subsequent
correlation analysis to determine the number of
time-lagged values for the process variables and
the number of retained PCs. This approach was
also used here. Although more accurate relation-
ships between the process variables can be ex-
tracted, the PCs are still to be auto-correlated,
as can be seen from Equation (1).

If the process variables are auto-correlated, the
score variables, which are linear combinations of
the original process variables, are auto-correlated
too. In addition, if a time-series structure of
auto-correlated process variables is considered,

the auto-correlation of the score variables will
accordingly be amplified. The application study in
Section 4 illustrates that strongly auto-correlated
score variables may lead to the production of
false alarms. Consequently, the auto-correlation
of the score variables must be removed in order
to prevent such alarms to occur. The next section
shows how the application of ARMA filters can
remove auto-correlation from the score variables.

2.2 Univariate Statistics

A univariate statistic, denoted as T2, can be
established using the retained score variables:

T 2 = tTΛ−1t (3)

where Λ is a diagonal matrix storing the n largest
eigenvalues of the covariance matrix SZZ =
1

K−1Z
TZ with K being the number of mean cen-

tered and appropriately scaled observations stored
successively as row vectors in Z ∈ RK×N . The
time variation in T2 can be plotted and its con-
fidence limit obtained as discussed by (Jackson,
1980).

Note that a second univariate statistic, referred
to as Q statistic and related to the residuals of
the PCA model prediction, can also be defined.
However, this statistic is not considered here,
since these residuals are assumed to describe mea-
surement uncertainty which is considered to be
represented by identically and independently dis-
tributed (i.i.d.) variables that are superimposed
on the “true” process variables. Hence, the auto-
correlation of the process variables does not affect
the Q statistic.

3. APPLICATION OF ARMA FILTERS

The application of ARMA filters is now proposed
to remove auto-correlations from the score vari-
ables. The general form of an ARMA filter is given
by (Box et al., 1994) as:

µ(B)

h(B)
=
Θ(B)

Φ(B)
, (4)

where µ and h are random variables, B is the
backward shift operator, i.e. Bµk = µk−1, and
Θ and Φ are polynomials in B of dimension
p and q, respectively. Moreover, the polynomial
Θ(B) = 1+θB+· · ·+θpB

p is the moving average
(MA) operator, whilst the polynomial Φ(B) = 1+
φB + · · · + φqB

q represents the autoregressive
(AR) operator. The input sequence, h(B), is as-
sumed to be a normally distributed white noise
sequence with zero mean and variance σ2h, i.e.
h ∈ N

(
0, σ2h

)
, and the sequence µ(B) represents

the filtered sequence of h(B) using the transfer

function RARMA(B) =
Θ(B)
Φ(B) .



Such ARMA(p, q) filters can be inverted so that
µ(B) represents the input sequence and h(B)
represents the output sequence, i.e. h(B) =
R−1
ARMA(B)µ(B). This implies that the inverse
filter can be employed to filter µ(B) so that a
normally distributed white noise sequence can be
produced. More precisely, the calculation of h us-
ing the filter R−1

ARMA(B) at the k
th time instance

is given by:

hk = µk− µ̂k = µk+

q∑

i=1

φiµk−i−

p∑

i=1

θihk−i, (5)

where µ̂k represents the prediction of µk using the
ARMA filter.

An inverse ARMA filter can be utilised to remove
the auto-correlation of the score variables. More
precisely, an ARMA filter can be identified for
each of the score variables and the residuals of
each ARMA filter can then be employed instead
of the original score variables. One could also con-
sider removing the auto-correlation of the original
process variables and then establishing a PCA
model. However, this would be computationally
more demanding, as there are usually considerably
fewer score variables, i.e. n < N . Furthermore,
the correlation structure between the process vari-
ables might then be changed, which implies that
the variable reduction, performed by PCA, might
not be as efficient.

3.1 Identification of ARMA Filters

A variety of approaches can be employed for iden-
tifying the parameters of the polynomials Θ(B)
and Φ(B). For example, (Liu and Hudak, 1992)
proposed a maximum likelihood estimation for
minimizing the variance of h(B), while (Box et

al., 1994) suggested a three-stage iterative proce-
dure involving the identification, the estimation
and diagnostic checking of the filter obtained.

To determine the orders of the polynomials Θ(B)
and Φ(B), a number of approaches have been
proposed. These can be divided into information
based criteria, such as the Akaike information
criterion (AIC) (Akaike, 1974), the BIC criterion
(Schwarz, 1978) and the minimum description
length (MDL) (Rissanen, 1978), and linear alge-
braic approaches, such as the determinant test-
ing algorithm (Chow, 1972), SVD based methods
(Cadzow, 1983; Zhang and Zhang, 1993) and the
linear, dual, decoupled procedure (LD2-ARMA)
algorithm (Ribeiro and Moura, 1991).

(Broersen, 1998) highlighted that the residuals of
an ARMA process provide an objective measure
for assessing the quality of different filters. In the
context of this paper, however, the purpose of the
filter is to remove auto-correlation from the score

variables. Hence, techniques that determine the
“optimal filter order”, i.e. the number of AR and
MA terms, on the basis of residuals may not be
suitable. In this work, the mismatch between the
estimated auto-correlation function (ACF) and
the “ideal ACF” within a window of length l is
used. This mismatch can be calculated as follows:

Jµ (p, q) =
1

l

l∑

j=0

(r(j)− r̂µµ(p, q, j))
2
, (6)

where Jµ(p, q) is a cost function, r(j) is the
“ideal ACF”, i.e. r(j) = δ0j with δ being the
Kronecker delta and r̂µµ(p, q, j) is the estimated
ACF including p MA and q AR terms.

Since the BIC criterion provides a consistent es-
timation of the number of AR and MA terms
(Pauler, 1998), it is adopted in conjunction with
the above cost function:

BIC(p, q) = log(Jµ(p, q))+2
(p+ q) log(K)

K
. (7)

The order of both polynomials, p and q, is then
selected to minimise the BIC cost function.

3.2 Identifying an ARMA based PCA Model

The first step is to record reference data from the
process. Note that reference data have to be se-
lected with care, to ensure that abnormal process
behaviour is not captured. Conversely, if the size
of the reference data is too small, then normal
variation within the process would not be ade-
quately represented (Kruger et al., 2001). A PCA
model then needs to be established. After defining
the order of dynamics m using parallel analysis,
(Wold et al., 1987) showed that the transforma-
tion matrix P is constructed by the dominant
eigenvectors of SZZ , which are stored as column
vectors. The number of retained score variables
can also be determined by parallel analysis, in-
cluding a subsequent correlation analysis to avoid
that the score variables which capture process
variation are not discarded. The score variables
can now be determined as shown in Equation (1),
and the “optimum” number of AR and MA terms
then found to remove auto-correlation from these
variables.

3.3 Application of ARMA based PCA Models

After the identification of an ARMA model for
each score variable, on-line process monitoring
can be established as follows. Given that a new
observation becomes available:

(1) Obtain the values of the score variables by
applying Equation (1).



(2) Apply the identified ARMA filters to each of
the score variables –Equation (5).

(3) Determine the T2 statistic –Equation (3).
(4) Update the monitoring chart.

4. APPLICATION STUDIES

This section presents an application study to a
benchmark example from the literature to illus-
trate the influence of auto-correlated process vari-
ables on the T2 statistic. This example involves
two process input variables and two process out-
put variables. From this process, a data set was
generated which represents an ARMA process and
dynamic PCA was subsequently applied.

4.1 Process Description

The process under study had the following de-
scription (Ku et al., 1995):

(
x
(1)
k

x
(2)
k

)
=

[
0.118 −0.191
0.847 0.264

](
x
(1)
k−1

x
(2)
k−1

)
(8)

+

[
1 2
3 −4

](
v
(1)
k−1

v
(2)
k−1

)

(
y
(1)
k

y
(2)
k

)
=

(
x
(1)
k

x
(2)
k

)
+

(
f
(1)
k

f
(2)
k

)
,

where vTk =
(
v
(1)
k v

(2)
k

)
and xTk =

(
x
(1)
k x

(2)
k

)

represented the process input and output vari-
ables at the kth time instance, respectively, and

fTk =
(
f
(1)
k f

(2)
k

)
represented measurement noise

superimposed to the “true” values of the output
variables to form the measured output variables

yTk =
(
y
(1)
k y

(2)
k

)
. The input variables of the

above process were defined as follows:

(
v
(1)
k

v
(2)
k

)
=

[
0.811 −0.226
0.477 0.415

](
v
(1)
k−1

v
(2)
k−1

)
(9)

+

[
0.193 0.689

−0.320 −0.749

](
w
(1)
k−1

w
(2)
k−1

)

(
u
(1)
k

u
(2)
k

)
=

(
v
(1)
k

v
(2)
k

)
+

(
g
(1)
k

g
(2)
k

)
,

here wT
k =

(
w
(1)
k w

(2)
k

)
represented sequences of

normally distributed values with zero mean and

unit variance, i.e. w
(1)
k and w

(2)
k ∈ N {0, 1}. In con-

trast to the simulation model by (Ku et al., 1995),
measurement noise was also superimposed on the
“true” values of the input variables, i.e. gTk =(
g
(1)
k g

(2)
k

)
, to form the measured input variables

uTk =
(
u
(1)
k u

(2)
k

)
. The measurement noises were

sequences of normally distributed variables with
zero means and variances chosen to be 5% of the
variance of each individual process variable, i.e.:

f
(i)
k ∈ N {0, 0.05 ·E{x

(i)2

k }} and g
(i)
k ∈ N {0, 0.05 ·

E{v
(i)2

k }}.

The output variables were then recorded as shown
in Equation (8) prior to the introduction of mea-
surement noise to the input and output vari-
ables. Since auto-correlated process behaviour is
achieved by describing the input and output vari-
ables by ARMA sequences, this process is further
referred to as the ARMA process and the corre-
sponding data set is denoted as the ARMA data
set.

A data set containing a total number of 2000 sam-
ples was generated as described above. The first
500 samples were selected as the reference data
and the remaining 1500 samples served as testing
data to evaluate the performance of the estab-
lished monitoring scheme. Given the construction
of the process variables, the PCA analysis was
based on the following dynamic data matrix:

Z =




y
(1)
2 y

(2)
2 y

(1)
1 y

(2)
1 u

(1)
1 u

(2)
1

y
(1)
3 y

(2)
3 y

(1)
2 y

(2)
2 u

(1)
2 u

(2)
2

...
...

y
(1)
2000 y

(2)
2000 y

(1)
1999 y

(2)
1999 u

(1)
1999 u

(2)
1999



. (10)

Since the “true” values of the output variables
were linear combinations of previous “true” values
of the input and output variables, a total number
of 4 PCs needed to be retained. The measurement
noise was represented by the 2 discarded PCs.
The confidence limits for the T2 statistic was
determined with a confidence of 99%.

4.2 Monitoring of the ARMA Processes

After establishing a PCA model using the first
500 samples, the auto-correlation function of the
4 retained PCs was determined. Figure (1) shows
that particularly the first two score variables were
strongly auto-correlated. Figure (2) shows the T2

statistic. The number of violations of the 99%
confidence limit was excessive after about 1500
samples into the data set. Furthermore, some of
these violations occur in sections, i.e. more than
one consecutive T2 value violates the confidence
limit. More precisely, almost 3.5% of the last 500
T2 values violate the 99% confidence limit. This
highlights the fact that the process was out-of-
statistical-control.

In summary, the application of an MSPC based
monitoring approach to a stationary process with
auto-correlated variables may lead to false alarms
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Fig. 1. Auto-correlation functions of retained PCs
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Fig. 2. Hotelling’s T2 statistic based on original
score variables)

being produced although the process itself be-
haves normally. To circumvent such violations, the
auto-correlation must be removed or filtered out
as discussed in the next subsection.

4.3 Monitoring of the ARMA Process Using Box-

Jenkins Filters

It is now shown that ARMA filters can remove
auto-correlation from the PCs. The filters were
identified using the same data set as in the previ-
ous subsection. The number of AR and MA terms,
p and q, was determined by applying Equations
(6) and (7). From analysing the ACF of each PC
(Figure 1), the window length l was chosen as 10.
Table (1) shows the selected number of AR and
MA terms. The resultant ACF of each filtered PCs
is shown in Figure (3) from which it can be seen
that only very marginal auto-correlation remains.
By comparing Figures (2) and (4), it can be seen
that:

Table 1. Number of AR and MA terms
for Retained PCs –ARMA Process

#PC #AR Terms (p) #MA Terms (q)

1 7 0

2 6 1

3 8 3

4 3 1
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Fig. 3. Auto-correlation functions of retained PCs
(filtered PCs)
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(i) the number of violations is less than 1%; and
(ii) violations of consecutive samples, as seen in

Figure (2) at around 1500 data points into
the data set, were removed.

The process was therefore in-statistical-control,
whereas without filtering, the T2 statistic and
the scatter diagrams suggested incorrectly that
the process was out-of-statistical-control. Apply-
ing ARMA filtering of the PCs has thus prevented
false alarms being produced.



5. CONCLUSIONS

This paper has studied the incorporation of
ARMA filters into the MSPC framework, moti-
vated by the fact that monitoring processes with
strongly auto-correlated variables may lead to the
production of false alarms. This was demonstrated
using a benchmark simulation from the literature.

It was shown that the application of ARMA filters
removes auto-correlation from the reduced set of
PCs, thus circumventing the production of false
alarms. A more robust monitoring scheme was
hence established for the application study used
in this work.

The benefits of filtering the PCs instead of the
physical process variables are that (i) the number
of ARMA filters to be established is much smaller
then the number of physical process variables,
(ii) the reduced variable set is then statistically
independent in contrast to the large number of
highly correlated process variables and (iii) auto-
correlation of the PCs can be removed.
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