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Abstract: This paper presents a new nonlinear multivariate statistical process
control technique for identifying and isolating the root cause of abnormal process
behavior. The new technique is a nonlinear extension to the variables reconstruc-
tion technique by (Dunia et al., 1996), based on nonlinear principal component
analysis (NLPCA). This work demonstrates that the variable reconstruction (i)
affects the geometry of the NLPCA model and (ii) alters the NLPCA based
monitoring statistics. Incorporating such changes into the NLPCA model using
reference data can address these issues. An industrial application study of a glass
melter process shows that abnormal events can be identified and isolated earlier
than conventional principal component analysis (PCA).
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1. INTRODUCTION

To guarantee that complex industrial processes
operate economically, safely and are environmen-
tally friendly, it is essential to constantly moni-
tor their performance. (MacGregor et al., 1991;
Kruger et al., 2001) highlighted that such pro-
cesses frequently produce a large set of highly
correlated process variables. This has led to the
evolution of a range of multivariate statistical
techniques that are collectively referred to as mul-
tivariate statistical process control (MSPC), and
represents an extension to more traditional uni-
variate process control (MacGregor and Kourti,
1995).

PCA is one of the most popular MSPC techniques.
PCA offers the capability to compress redundant
information in the process measurements, result-
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ing from the high degree of correlation, by re-
taining only essential information that can be ex-
ploited to describe the current state of the process
operation (Wise and Gallagher, 1996).

(Russell et al., 2000) showed that the diagnosis
of anomalous process behavior entails fault de-
tection, fault identification and fault isolation.
(Jackson, 1991; Miller et al., 1998) stated that
the difficult issue is to determine the root cause
responsible for abnormal process behavior. This is
because MSPC provides monitoring statistics that
only allow such behavior to be detected. (Miller
et al., 1998) proposed the use of contribution
charts as the “missing link” in multivariate quality
control. However, contribution charts only allow
the identification of the potential root causes of
anomalous behavior.

(Dunia et al., 1996) introduced a variable recon-
struction procedure to remove “fault information”



from the recorded process variables in order to
provide a clearer isolation of the fault condition.
This technique relies on predicting a set of process
variables using the remaining set of variables and
the underlying linear PCA model.

This paper presents a nonlinear extension to
their linear variable reconstruction technique.
This then offers a nonlinear MSPC monitoring
approach that addresses the issues of fault detec-
tion, identification and isolation. The nonlinear
PCA technique is based on recent work by the au-
thors (Antory et al., 2004). (Lieftucht et al., 2004)
showed that variable reconstruction in fact alters
the underlying PCA model. Consequently, the un-
derlying PCA model must also be “reconstructed”
to incorporate the impact of this alteration. The
new nonlinear variable reconstruction technique
proposed here accommodates the influence of the
reconstruction process.

This paper is divided into the following sections.
A brief review of PCA/NLPCA is given prior to
the introduction of the novel nonlinear variable
reconstruction technique. A detailed analysis of
the technique is included. This is followed by the
application study to an industrial melter process.
It is shown that a developing crack could be de-
tected and identified using the NLPCA technique
by (Antory et al., 2004) and isolated using the
new nonlinear variable reconstruction technique.

2. BACKGROUND TO PCA/NLPCA

In this section, a brief review of the principles of
linear and nonlinear PCA is given.

2.1 PCA

For a given vector of n process measurements,
z ∈ Rn, the application of PCA gives rise to
the definition of a reduced set of “artificial” score
variables.

PCA describes the measurements in z as follows:

z = t1p1 + t2p2 + · · ·+ tkpk + e, (1)

ei = dT
i z = zi − ẑi, (2)

where di is the ith row of the matrix D =[
I−PPT

]
.

where t1, t2, . . ., tk are the score variables, p1,
p2, . . ., pk are PCA loading vectors, k < n
is the number of retained principal components
(PCs) and e represents the residuals of the PCA
model. The score variables represent significant
process variation, whilst e describes insignificant
and redundant variation in z.

2.2 NLPCA

Nonlinear PCA is a generalisation of linear PCA
which describes nonlinear relationships between
the recorded process variables. The work pre-
sented here relies on the application of autoas-
sociative neural networks (AAN). The architec-
ture of AAN relies on three hidden layers: the
mapping, the bottleneck and the de-mapping lay-
ers (Kramer, 1992). The input layer receives the
measured process variables, while the output layer
provides the NLPCA prediction of the process
variables. Consequently, this identity mapping en-
capsulates the important variation of the process
variables in a reduced set of nonlinear scores,
obtained in the bottleneck layer.

(Antory et al., 2004) proposed an improved
NLPCA technique based on first using PCA and
subsequent application of an AAN to the linear
PCA score variables. This approach has been re-
ferred to as the T2T identity mapping network.
This enables the removal of linear redundant in-
formation from the recorded process data prior
to the determination of the AAN architecture.
Note that the score variables are (i) fewer in
number and (ii) are assumed to be statistically
independent (Jackson, 1991), which (iii) gives rise
to a pre-conditioning for the identification of the
network parameters.

The mathematical description of the T2T network
is as follows:

tnl = f (t) (3)

t̂ = g (tnl) (4)

where tnl ∈ RkL , kL < k, stores the nonlinear
score variables, with kL being the number of
bottleneck nodes. f (◦) and g (◦) are nonlinear
functions that represent the mapping and de-
mapping layers of the T2T network, and t̂ ∈ Rk

is the prediction of t.

3. NONLINEAR VARIABLE
RECONSTRUCTION

Variable reconstruction was first discussed by
(Dunia et al., 1996) in conjunction with linear
PCA. Using this technique, a subset of process
variables can be reconstructed using the remain-
ing process variables and the identified PCA
model (Dunia and Qin, 1998). Recently, (Lieftucht
et al., 2004) demonstrated that variable recon-
struction alters the confidence limit of the Q
statistic and the variance of the score variables.
Further, they showed how to incorporate such
changes into process monitoring.

The work presented here enhances the variable re-
construction technique by (Dunia and Qin, 1998),



so that it can be applied in a nonlinear context.
This nonlinear extension is applied in conjunc-
tion with NLPCA. They showed that if the Q
statistic is significant, the variable reconstruction
technique for linear PCA can isolate the fault
signature from the recorded process variables. The
Q statistic for the NLPCA model is given by:

e = z−Pf
(
g

(
PT z

))
Q = eT e, (5)

with P =
[
p1 p2 · · · pk

]
, The principles of non-

linear variable reconstruction to isolate the fault
signature using the NLPCA model are outlined
next.

3.1 Nonlinear Reconstruction Algorithm

(Dunia et al., 1996) showed that reconstruction of
the jth process variable is an iterative process:

znew
j = [ zT

−j zold
j zT

+j ]cj (6)

where cj is the jth row vector of C = PPT , which
can alternatively be formulated as follows:

z̃j =
1

1− cjj

n∑

i=16=j

cjizi, (7)

where z̃j is the reconstructed value of the jth

process variable.

To integrate the above linear variable reconstruc-
tion for application in conjunction with NLPCA,
the iteration technique of Equation (6) has to
be considered. This is because the mapping and
demapping of the T2T network are based on
nonlinear functions. Using linear PCA, however,
these transformations are linear and involve the
retained PCA loading vectors, stored in P.

The iterative process of nonlinear reconstruction
is as follows:

(i) obtain the nonlinear score variables from
the current process measurements using the
mapping layer of the NLPCA model ;

(ii) predict the current process measurements
using the demapping layer of the NLPCA
model ;

(iii) replace the measured value of the jth process
variable by the predicted one obtained from
step (ii); and

(iv) go to step (ii) until the difference between
two consecutive values of the predictions of
the jth process variable is smaller than a
given threshold, e.g. 10−8.

Mathematically, the above procedure can be sum-
marized as follows. The prediction of the current
process measurements is given by:

ẑ(1) = Pf (g (Pz)) (8)

Replacing the measurement of the jth process
variable by its prediction leads to:

z∗ =
(
z1 z2 · · · ẑj · · · zn

)T (9)

Applying Equation (7) again yields:

ẑ(i) = f (g (z∗)) (10)

where i represents the actual iteration step. The
iterative procedure has converged if

∥∥∥ẑ
(i+1)
j − ẑ

(i)
j

∥∥∥ < ε (11)

More than one variable can be reconstructed, up
to a maximum number equal to the number of
bottleneck nodes.

4. APPLICATION STUDY: GLASS MELTER
PROCESS

This section presents an application study of
NLPCA, and the new nonlinear variable recon-
struction technique, to an industrial melter pro-
cess. The aim is to detect, identify and isolate the
influence of a crack based on a historical data.

The melter process is part of the disposal pro-
cedure. Waste material is pre-processed by an
evaporation treatment leading to the production
of powder, which is then clad by a glass layer, pro-
vided by the melter process. The melter consists
of a vessel, two exit funnels through which the
melter load flows out and several induction coils.

The vessel is continuously filled with the powder
while raw glass is discretely introduced in the form
of glass frit. This binary composition is heated by
four induction coils, which are positioned around
the vessel. Because of the heating procedure, the
glass is melted homogeneously.

The process of filling and heating continues until
the desired height of the liquid column is reached.
The molten mixture is then poured out through
one of the exit funnels. After the contents of
the vessel has been emptied to the height of the
nozzle, the next cycle of filling and heating begins.

Measurements of 8 temperatures, the power in 4
induction coils and voltage were taken every five
minutes. The filling and emptying cycles resulted
in a nonlinear relationship between the tempera-
tures, power in the induction coils and voltage.

The melter vessel is made of graphite, which is a
brittle material. As a result of the strong temper-
ature variations to which the vessel is frequently
exposed, cracks may occur along the regions of
high stress. These cracks not only damage the
shell of the melter, but also allow the molten con-
tent to escape. It is therefore necessary to detect
such cracks at an early stage.



Historical data from the melter process was avail-
able, which included normal process variation and
an abnormal process situation resulting from a
developing crack. The recorded data contained
1050 samples, at a sampling frequency of 5 min-
utes, with the last 50 points corresponded to the
development of a crack in the melter vessel.

4.1 Identification of a NLPCA Monitoring Model

A PCA model was identified based on the first
1000 data points of the recorded data set. Pre-
vious work by the authors (Antory et al., 2004)
showed that the linear PCA model included 10
principal components. By discarding the last three
PCs, i.e. k = 10, the reconstruction of the 13
process variables revealed that (i) only insignifi-
cant variation remained in the PCA residuals and
(ii) the emptying and filling cycles were accurately
described.

Furthermore, the PCs were assumed to be sta-
tistically independent, which provided favorable
conditions for the subsequent identification of an
AAN architecture. This network included 7 nodes
in the mapping layer, 3 bottleneck nodes, i.e.
knL

= 3, and 7 nodes in the de-mapping layer.
This implies that only 3 nonlinear score variables
were required to produce an accurate NLPCA
model for a total of 13 process variables.

To monitor this process, the Q statistic and scat-
ter diagrams, for which the confidence regions
were obtained using a Kernel Density Estimation
(KDE), were used for process monitoring. Using
scatter diagrams, the influence of the developing
crack was noticed almost 2 hours earlier compared
to the application of conventional PCA to the
same data (Chen et al., 2000).

4.2 Fault Detection and Identification

Figure 1 shows the influence of the developing
crack results in a statistically significant Q statis-
tic from the 33rd data point.

The severity of the crack increases over time and
led eventually to the failure of a particular tem-
perature sensor that was closest to it. To identify
potential root cases of this event, contribution
charts to the Q statistic were used.

Figure 2 illustrates that the contribution chart,
evaluated for the 33rd data point, identified the
temperature reading of sensor 6 and and the
power reading of the 3rd induction coil as the
dominant contributors to this event.

This was a correct analysis of the event, since a
later investigation showed that the crack indeed
developed in the vicinity of the 6th temperature
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Fig. 1. The Detection of Crack in Melter Process

Fig. 2. Variable Contributions to the Fault

sensor. In addition, the change in the temperature
profile affected the power consumed by the 3rd

induction coil as a result of controller feedback.

4.3 Fault Isolation

Using the new nonlinear variable reconstruction
technique, the information from the previous fault
identification step is now used to isolate the signa-
ture of this event from the recorded data. Given
that the 6th temperature sensor shows a signif-
icant response, the corresponding variable was
reconstructed using the remaining ones.

Figure 3 compares the recorded and reconstructed
sequences of the 6th temperature sensor.
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Fig. 3. Temperature Sensor 6 Before and After
Reconstruction



This figure demonstrates that the nonlinear re-
construction technique successfully isolates the in-
fluence of the developing crack from the recorded
sequence. In order to evaluate whether the process
was operating “in-statistical-control” after the re-
construction of the 6th temperature sensor, the
Q statistic was re-examined. Figure (4) highlights
that no violations of the 99% confidence limit
arose after the 6th temperature sensor was recon-
structed. Consequently, an experienced operator
would have been directed to focus attention on
this sensor.
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Fig. 4. Fault Detection for a New Reconstructed
Test Set

As discussed by (Lieftucht et al., 2004), the con-
fidence limit for the Q statistic must be altered
to accommodate the changes of the variable re-
construction on the monitoring model. This was
achieved by reconstructing the readings of the
6th temperature sensor in the reference data set,
i.e. the first 1000 samples, and recalculating the
confidence limit. Figure 5 represents the influence
of reconstructing the 6th temperature sensor on
the 99% confidence limit of the Q statistic. It
should be noticed that after the reconstruction,
the confidence limit for the Q statistic increased,
as a result of the applied reconstruction process.
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Fig. 5. Comparison of Fault Detection before and
after the Reconstruction Process

4.4 Scatter Diagrams for Fault Diagnosis

To show the process variation encapsulated in the
nonlinear score variables, (Antory et al., 2004)
proposed the use of scatter diagrams for which
the confidence regions are identified using KDE.
This was motivated by the fact that the nonlinear
score variables may not be normally distributed
and consequently, the assumptions imposed on the
Hotelling’s T2 statistic may be violated.

Figures 6 to 8 show the application of scatter
diagrams for fault diagnosis process.
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Fig. 6. Scatter Diagram: PC1 vs. PC2
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Fig. 7. Scatter Diagram: PC1 vs. PC3

The scatter points corresponding to the mea-
sured and reconstructed scatter points are respec-
tively represented by the symbols × and ◦. In
a similar fashion to the confidence limit of the
Q statistic, the 99% confidence limits were also
recalculated on the basis of the reconstruction
of the 6th temperature readings in the reference
data. Note that a few scatter points remain out-
side the confidence regions, which would indicate
an “out-of-statistical-control” situation. However,
these points relate to the instances 46 to 50, i.e.
when the sensor failed. The failure of the 6th

temperature sensor propagated back to influence
to the regulatory control system and consequently
adjusted the power in the induction coils. This,



−3 −2 −1 0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

PC2

P
C

3

Fig. 8. Scatter Diagram: PC2 vs. PC3

in turn, caused the introduction of an excessive
process variation. This excessive process variation
produced the “out-of-statistical-control” situation
for the last 5 instances. However, the underlying
NLPCA model, after the reconstruction of the
6th temperature sensor, could accurately describe
the “variation” of the melter process, since Figure
1 represents an “in-the-statistical-control” situa-
tion.

5. CONCLUSIONS

This paper presents a novel nonlinear variable
reconstruction technique in conjunction with the
application of an autoassociative neural network
(AAN) based on nonlinear principal component
analysis (NLPCA) model for process fault isola-
tion. This reconstruction technique represents a
nonlinear extension of the variable reconstruction
technique by (Dunia et al., 1996). Based on the
findings of (Lieftucht et al., 2004), the confidence
limit for the Q statistic and the confidence regions
for the scatter diagrams are adjusted to accommo-
date the changes that the reconstruction process
imposes upon the PCA/NLPCA model.

The application study to an industrial melter
process demonstrated that (i) a developing crack
could be detected and identified using the NLPCA
technique by (Antory et al., 2004) and (ii) isolated
using the new nonlinear variable reconstruction
technique.
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