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Abstract: State filters can be used to produce online estimates of the state of a
process. If an exact model for the true process is not known, but multiple candidate
models are available to describe the current behavior of the true system, it is
necessary to select that model that leads to the optimal state estimates. This paper
describes a novel approach for model selection for state estimation by comparing
the expected weighted prediction error using estimated states of different candidate
models. The expected prediction error can not be computed exactly, but can be
estimated using a newly derived generalized version of the FPE selection criterion.
A simulation example of a time varying system is used to illustrate the performance
of the selection method.
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1. INTRODUCTION

The goal of monitoring can be to provide an oper-
ator with accurate online information on critical
process variables. In this paper these physical
variables will be referred to as the state of the
system. Since the complete state of a complex
process often cannot be measured directly, it has
to be estimated using measurements related to
the state. To obtain these estimates a model of
the system is required that describes the dynamic
behavior of the state and relates the states to the
available measurements.

Assume that the model can be written in the
following state-space form:

xk+1 = f(xk, uk, θ) + wk (1)

yk = h(xk, θ) + vk, (2)

1 The work of Robert Bos is supported by Dutch research
organization TNO-TPD.

in which xk is the system state at time index
k, uk are the known inputs to the system, yk
are the measured system outputs, θ is a known
parameter vector and wk and vk are zero mean
independent gaussian noises that operate on the
states and measurements respectively. In process
industry,f(·) and h(·) will generally be complex
nonlinear functions. If a model in this form is
given, it is usually possible to construct a state
filter, that produces an online estimate of a true
state xk using all measurements y0, . . . , yk. We
will denote this estimate as x̂k|k. Examples of such
filters are the Extended Kalman Filter (EKF)
(Anderson and Moore, 1979), Unscented Kalman
Filter (UKF) (Julier et al., 2000), Moving Horizon
estimators (MHE) (Robertson and Lee, 1995) and
Particle Filters (Doucet et al., 2001). Since a state
filter estimates states based on measurements
yk and the model (1)-(2), the accuracy of the
estimated states not only depends on the accuracy
of the measurements, but also on the quality of the



model. If, for instance, the model is incorrect, the
state estimates could be severely biased.

In some situations multiple candidate models are
available for describing the current behavior of
the true system. An example of such a situation
is in model based fault detection and isolation
(FDI). In model based FDI, at least one model
is given to describe the nominal process behavior,
while a second set of models describe the behavior
of the process after corresponding faults have
occurred. These fault models could be the same
as the nominal models, but with time varying
parameters. In this paper we will focus on the
problem of selecting the best possible model for
state estimation.

Model selection for filtering problems is often de-
scribed using Bayes conditional probability the-
ory (Gustafsson, 2000). Suppose n models of the
form (1)-(2) are available, denote these models
as Mi, with i = 1, 2, . . . , n. Then the filtering
procedure is carried out for each model, on data
y. Afterwards, using Bayes conditional probabil-
ity theory, the conditional probability p(Mi|y) is
computed. The model with the highest conditional
probability is then selected, and the state esti-
mates based on this model are used. The con-
ditional probability p(Mi|y) can be computed
via: p(Mi|y) = p(y|Mi)p(Mi)/p(y). Using this
equation in practice for complex process models
is generally difficult, because the term p(y|Mi)
is not trivial to compute for non-linear systems
and knowledge of the a-priori probability of each
model p(Mi) is rarely available.

An alternative approach to the model selection
problem is given in (Tyler et al., 2000). If a moving
horizon state estimator (MHE) is used for state
estimation, the state estimation problem is writ-
ten as a weighted and regularized least squares
problem. The problem of model selection is there-
fore approximately similar to model selection in
system identification theory. Given this similarity,
the model selection is done using the Akaike In-
formation Criterion (AIC). Advantages of this ap-
proach are that exact probability distributions are
no longer required, and the technique can also be
easily adapted for non-linear models. Drawbacks
of this approach are that the technique can only be
used in conjunction with moving horizon estima-
tors. Another drawback is that the AIC criterion
may not be the best criterion, since it was derived
only for least squares problems without weighting
and regularization, while states are estimated with
weighting and regularization.

In this paper a model selection procedure closely
related to (Tyler et al., 2000) will be considered.
Instead of using AIC, a specialized criterion for
weighted and regularized least squares problems
is derived. Secondly we will show that the model

selection can also be used with estimators different
from the MHE. Finally a simulation example is
presented in which model selection is used to
accurately estimate the state of a time varying
system.

2. MODEL SELECTION FOR STATE
ESTIMATION

As mentioned in the introduction, our objective
is to estimate the state vector of a true process
using the output vector yk, the input signal uk

and a model of the true process. Assume that this
model of the true system is given by the linear
state space equations:

xk+1 =Axk +Buk + wk (3)

yk =Cxk + vk. (4)

where wk and vk are gaussian noises with
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If the model (3)-(4) perfectly describes the true
system, an optimal estimate of the state vector xk

at each time k can be obtained using a Kalman fil-
tering procedure implemented using (3)-(4). Such
a filtering procedure consists of two steps. In the
prediction step, a prediction x̂k+1|k of the state
vector is given, along with its covariance matrix
P̂k+1|k. In the measurement update, the measure-
ment yk+1 is used to refine the prediction into
estimate x̂k+1|k+1 and to produce its covariance
matrix P̂k+1|k+1. An important result for the se-
quel is that the measurement update in a Kalman
filtering procedure can be seen as the solution of a
Weighted and Regularized Least Squares (WRLS)
problem (Kailath et al., 1999):

x̂k|k = argmin
x

‖yk − Cx‖2
R−1

+ ‖x− x̂k|k−1‖2
P̂−1

k|k−1
, (6)

with ‖z‖2
W = zTWz for z ∈ R

n.

If the model of the true system that is assumed
to perfectly describe the true system is non-
linear, such as e.g. in (1)-(2), an estimate of
the state vector xk can again be obtained using
very similar procedures (e.g. using the EKF or
UKF instead of the normal Kalman Filter) which
also consist of two steps: a prediction step and
a measurement update step. Moreover, it can be
proven that, if the output function (2) can be well
approximated by a linear function around x̂k|k−1,
the measurement update in this procedure is still
approximately a WRLS problem:



x̂k|k = argmin
x

‖yk − ŷ(x)‖2
R−1

+ ‖x− x̂k|k−1‖2
P̂−1

k|k−1
, (7)

where ŷ(x) denotes the predictor of the output
vector yk using the state vector x and the available
model (1)-(2) i.e. ŷ(x) = h(x). By comparing (6)
and (7), we see that (7) is also valid in the linear
case with ŷ(x) = Cx.

The state estimation procedure delivers an es-
timate x̂k = x̂k|k for xk using the assumption
that the available model perfectly describes the
true system. In practice, the model is only an
approximation of the true system and the quality
of the estimate of xk will depend on the quality of
the chosen model. Consequently, the model will
have to be chosen in such a way that the state
estimation procedure based on this model delivers
a good estimate of xk. In this paper, we will
consider the particular situation where we have
several candidate-models and we have to select,
among these models, the model which will deliver
the best estimate of the state vector. To make
this selection, only known inputs and measured
outputs are available.

Our selection procedure will be based on a mea-
sure of the quality of the model for the estimation
of the state vector. Different measures could be
considered for this purpose. In this paper, we will
define a measure of quality which is very similar to
the quality measures used in system identification.
Given a model of the type (1)-(2) and given the
estimate x̂k of the state vector at time k obtained
using the WRLS problem (7), the measure of
quality V(k) at time k is defined as follows:

V(k) = Ex̂k
V (x̂k, k). (8)

with V (x, k) = Eyk
‖yk − ŷ(x)‖2

R−1 . (9)

Using (9), we see that V (x̂k, k) represents the abil-
ity of the model and the estimate x̂k to predict not
only the particular realization of the output vector
yk that we used to estimate x̂k, but also all other
possible realizations of yk. In (9) the prediction
error yk − ŷ(x) is weighted with R−1, to take into
account the variability of the measurements yk.
The quantity V (x̂k, k) is still a random variable
since x̂k is determined using noisy data. There-
fore, it is safer to consider its mean as measure
of quality for the model such as we have done
in (8). From the definition of V(k), we see that
the smaller the time function V(k) is, the better
is the model.

We have thus defined a measure V(k) of the qual-
ity of a model. This quantity can only be used in
a quality assessment procedure if it is possible to
compute (or to approximate) V(k) using the avail-
able data. In order to find a method for computing
(or approximating) V(k), we first notice the strong

analogy between V(k) and the Final Prediction
Error (FPE) that is used to assess the quality
of a model in system identification theory (see
(Ljung, 1999)). We can indeed see the FPE as a
special case of V(k) where the matrix R in (9) has
been replaced by the identity matrix and where x̂k

has been estimated using the criterion (7) with
R = I and with P̂−1

k+1|k = 0. In (Ljung, 1999)
an approximation for FPE is also given for the
case where x̂k has been estimated using the prob-
lem (7) with R = I and with P̂−1

k+1|k = δI with δ a

positive real constant. However, in practice P̂−1
k+1|k

cannot be written as δI, which implies that the
approximations in (Ljung, 1999) can not be used
directly in order to approximate V(k) if x̂k has
been estimated using the general WRLS problem
(7). We have therefore extended the results of
(Ljung, 1999) in order to be able to approximate
V(k).

Proposition 1. Let us consider the time instant
k and the output vector yk collected from the
true system at that instant. Let us also consider
the measure of quality V(k) defined in (8)-(9).
Furthermore assume that the estimate x̂k of the
state vector in (8)-(9) is obtained via the following
weighted and regularized least squares problem
which is equivalent to (7):

x̂k = argmin
x

(V (x, k)

+(x− x#k )TP−1(x− x#k )
)

(10)

in which x#k is a given state vector, P−1 is a
positive semi-definite regularization matrix, and
V (x, k) is a weighted least squares criterium:

V (x, k) = ‖yk − ŷ(x)‖2
R−1 . (11)

Then, if we can further assume that x#k ≈ x∗k =
argminx V (x, k), that yk− ŷ(x∗k) is approximately
a white noise and that the dimension of the vector
yk is sufficiently large, we have that

V(k) ≈ V (x̂k, k) + 4tr
{
[(ψTR−1LR−Tψ)]

×
[
V

′′
(x∗k, k) + 2P−1

]−1
}
. (12)

where L = E(eeT ) with e = yk − ŷ(x∗k) and
ψ = ∂

∂x ŷ(x) evaluated at x = x∗k.

Proof. See Appendix A. ✷

As mentioned in the statement of Proposition 1,
the derivation of the approximation (12) requires
some additional assumptions. These assumptions
are also present in the less general version of
(Ljung, 1999) and in the same reference the con-
sequences of these assumptions are discussed.



The estimated asymptotic fit V(k) in (12) is the
sum of the achieved fit V (x̂k, k) on the mea-
surement data and a complex term. This term
contains the second derivative of V (x∗k, k). For
general models this quantity can be approximated
by the second derivative of V (x̂k, k). Similarly, ψ
can be approximated using the derivative of ŷ(x)
evaluated in x̂k instead of x∗k. If the output model
is linear, for instance as is the case in (4), such
approximations are not necessary, because in this
case it is easy to show that V

′′
(x∗k, k) = 2CR−1CT

and ψ = C. L represents the covariance of the
minimal asymptotic prediction error. For additive
measurement noise, L = R.

Let us now summarize and define our model
selection procedure. We wanted to select, among a
set of candidate-models, the model which delivers
the best estimate of the state vector. We have
defined for this purpose a measure V(k) of the
quality of a model. This measure is a time function
and can be approximated using (12). In order
to make the selection, let us compute, with each
model, the estimate of the state vector at time
instants k = 1...M . Let us then approximate Vi(k)
for each model and for k = 1...M (Vi(k) denotes
the quality measure of the ith model). Then,
let us determine for each model i, the average
quality measure over k = 1...M i.e. Vav,i =
(1/M)

∑M
k=1 Vi(k). The best model is then defined

as the model for which Vav,i is minimal.

Using the average Vav,i of the quality measure
over k = 1...M as selection criterion has two
advantages: we replace a time function Vi(k) by
a single number and we generally decrease the
influence of the approximation errors in Vi(k).

3. MODEL SELECTION AND TIME
VARYING SYSTEMS

State estimation for time varying systems can be
improved by treating the estimation problem as
a model selection problem which can be solved
using the model selection procedure of section 2.
This particular estimation setup is explained in
the sequel of this paper.

Time varying systems are very common in the
industrial world: the true behavior of a complex
process will generally change over time. Changes
can occur slowly, for example due to wear, but
can also occur abruptly, e.g. due to a sudden fault
in the system. If the system behavior changes,
but the model used for state estimation remains
the same, state estimates will most likely become
biased.

If we assume that the dynamics of the true system
can be described by (1)-(2) and that any change in
the dynamics of this true system can be modelled

as changes in the model parameters θ, then an
extra equation can be added to the model, such
that the model parameters are allowed to change:

θk+1 = fθ(xk, θk, uk) + wθ
k, (13)

where wθ
k is a independent gaussian noise. If we

define a new vector x̃ = [xT
k θ

T
k ]

T , it is always
possible to combine (1)-(2) with (13) into a new
model:

x̃k+1 = f̃(x̃k, uk) + w̃k (14)

yk = h̃(x̃k, uk) + vk, (15)

with w̃k = [wT
k w

θ
k

T ]T . Since the form of (14)-
(15) is the same as that of the original model
(1)-(2), a state filter can usually be designed to
simultaneously estimate states xk and to update
parameters θk. The price for simultaneously esti-
mating states and parameters is that the variance
of the estimated states will increase, even if the
true model parameters are constant. If we assume
that parameters only change very slowly over
time, this may be wasteful, because the estimation
bias caused by slightly incorrect parameters may
be less than the extra variance that is caused by
simultaneously estimating states and parameters.

Let us summarize. We cannot use a model with a
fixed parameter vector to estimate the state vector
of time varying systems, because the estimate
will become biased if the true parameter vector
has changed. An estimator based on a flexible
parameter model such as in (14)-(15) is also a
suboptimal solution in this case since the estimate
will have a large variance in the periods where the
true parameter vector is constant.

Based on this, it is obvious that a better estimate
of the state vector of a time varying true system
would be obtained if the fixed parameter model
(with the correct parameter values) is used at
times where the true parameter remains constant
and if the flexible parameter model is used when
the true parameter vector is actually changing.
In order to decide at a given time instant k,
whether we have to use the fixed or the flexible
parameter vector model, we apply our model
selection procedure of section 2. The details of
this model selection procedure are illustrated in
an example in the next section.

4. SIMULATION EXAMPLE

In the simulation example we will use model
selection to estimate states of a time varying
system. Consider the following simple system:

xk+1 =
[
θk 0.7
0 0.9

]
xk +

[
1
1.5

]
uk + wk (16)

yk = [1 1]xk + vk. (17)
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Fig. 1. True and estimated parameter θk in the
simulation example.

The input signal uk was chosen as a random
binary signal with a switching probability of 0.05,
the noises wk and vk were chosen as gaussian with:

E

[
wk

vk

]
= 0 E

[
wk

vk

]
[wT

k v
T
k ] =

[
Q 0
0 R

]
(18)

Q= I R = 10. (19)

If the parameter θk is constant, these system
equations describe a linear system for which the
standard Kalman filter is the optimal state esti-
mator. In this example however the parameter θk
is chosen to be time varying. The parameter θk
jumps from -0.90 to 0.90 at k = 255 and starting
from k = 500, the parameter gradually returns to
its original value, see Figure 1. This way, both a
sudden jump (fault) and slowly changing behavior
are modelled.

Using this system N = 1000 measurements yk
are generated. The true states xk and parameters
θk are also stored. Afterwards, using only the
recorded measurements and inputs, the state of
the system is estimated using the procedure based
upon model selection as presented in the previous
section. The estimation error is expressed in the
mean squared error: 1

N

∑N−1
k=0 ‖xk − x̂k|k‖2.

For the model selection procedure two candidate
models of the system are available. The first model
is equal to the true model (16)-(17), but uses
constant parameters, i.e.:

θk+1 = θk. (20)

The initial value for the constant parameter is
−0.90, which is equal to the true starting value of
θk. As proposed in section 3, the second candidate
model is a flexible parameter model, i.e. the model
(16)-(17) augmented by:

θk+1 = θk + wθ
k (21)

with wθ
k chosen as a gaussian white noise with

variance 0.1.

Table 1. Mean squares errors of esti-
mated states for a time varying system.
States were estimated using a fixed pa-
rameter model, a random walk param-
eter model, and using model selection.
Results are averaged over 200 simula-

tion runs.

Fixed parameter Flexible par. filter Selection filter

1.1 · 104 15.1 11.8

In this example, the optimal model for state esti-
mation will be selected using the model selection
procedure of section 2. Two UKF filters are de-
signed using the given models. At time instant
k = k0, both filters are initialized with the same
estimate x̃k0|k0 and P̃k0|k0 . Then both filters are
run for M = 15 time steps and Vav,i of each
filter model is computed. The results of the model
with the lowest Vav,i is then chosen as the final
selected result. At time k0+M all filters are again
initialized with the selected result and all filters
are again run for M time steps, etcetera.

For illustration purposes, we have also estimated
the state vector using only the fixed parame-
ter model and using only the flexible parame-
ter model. The results of all the simulations are
given in Table 1. As expected, the fixed parameter
model alone produces very poor results, due to
the bias caused by using an inaccurate model.
The results obtained using the flexible parameter
model alone are much better. The extra degree of
freedom in this model allows the filter to correct
the parameter in the measurement update of the
filtering procedure. The results using both models
and our new model selection procedure are, as
expected, much better than the results using the
fixed model alone and better than the results
of using the flexible parameter model alone. By
looking at Figure 1, we indeed observe that the
estimate using our new procedure is made using
the fixed parameter model in the time periods
where the true parameter remains constant, so
that there is no extra variance in the estimated
state.

5. CONCLUSIONS

This paper discusses a new algorithm for model
selection for state estimation problems. The pre-
sented algorithm uses the expected weighted pre-
diction error of estimated states, denoted as V(k),
as a selection criterion. The expected weighted
prediction error cannot be estimated using the
standard FPE criterion, since parameters are es-
timated using a weighted and regularized least
squares problem. To overcome this problem a new
estimator for V(k) has been derived, that is also
valid if states are estimated using weighting and



regularization. Using V(k) as the selection crite-
rion has the advantage that the exact conditional
probability of a model structure given the data
does not need to be computed. The new algorithm
was also demonstrated in a time varying system
simulation example.
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Appendix A. PROOF OF PROPOSITION 1

Define W (x, k) as:

W (x, k) = V (x, k) + ‖x − x#k ‖2
P−1 , (A.1)

then
x̂k = argmin

x
W (x, k). (A.2)

Define also W (x, k) as:

W (x, k) = V (x, k) + ‖x − x#k ‖2
P−1 . (A.3)

In order to prove the proposition, let us first
expand V (x̂k, k) around x∗k = argminx V (x, k):

V (x̂k, k) = V (x∗k, k)+
1
2
(x̂k−x∗k)TV

′′
(ζk, k)(x̂k−x∗k)

(A.4)
In the equation above, a ′ means taking the
partial derivative with respect to x. Similarly since
W ′(x̂k, k) = 0:

W (x∗k, k) =W (x̂k, k)

+
1
2
(x̂k − x∗k)W ′′(ζk, k)(x̂k − x∗k), (A.5)

which is easily rewritten into:

W (x̂k, k) =W (x∗k, k)

− 1
2
(x̂k − x∗k)W ′′(ζk, k)(x̂k − x∗k). (A.6)

The second derivative of W (x, k) is:

W ′′(x, k) = V ′′(x, k) + 2P−1. (A.7)

Inserting (A.3) and (A.7) into (A.6) and using the
assumption that x#k = x∗k, we obtain:

V (x̂k, k) = V (x∗k, k) (A.8)

− 1
2
(x̂k − x∗k)(V ′′(ζk, k) + 4P−1)(x̂k − x∗k)

Take the expectations of (A.4) and (A.8) and use
the following asymptotical relations:

Ex̂k
(x̂k − x∗k)(V

′′
(ζk, k))(x̂k − x∗k)

= Ex̂k
tr

{
V

′′
(ζk, k)(x̂k − x∗k)(x̂k − x∗k)T

}

≈ tr V
′′
(x∗k, k)Px (A.9)

in which Px is the asymptotic covariance matrix
of x̂k. Also,

Ex̂k
(x̂k − x∗k)(V ′′(ζk, k))(x̂k − x∗k)≈ trV

′′
(x∗k, k)Px

and V (x∗, k)≈ V (x∗, k).
Using the last three relations together with (A.4)
and (A.8) gives:

Ex̂k
V (x̂k, k)≈ V (x∗k, k) +

1
2
trV

′′
(x∗k, k)Px

Ex̂k
V (x̂k, k)≈ V (x∗k, k)−

1
2
tr(V

′′
(x∗k, k) + 4P−1)Px

Combining the two last expressions yields:

Ex̂k
V (x̂k, k) ≈ Ex̂k

V (x̂k, k)+tr(V
′′
(x∗k, k)+2P

−1)Px

(A.10)
Using the theory of chapter 9, pages 281-282 in
(Ljung, 1999), it can be shown that the covariance
matrix Px equals:

Px = 4
[
W

′′
(x∗k, k)

]−1 [
ψTRLRTψ

] [
W (x∗k, k)

]−1

= 4
[
V

′′
(x∗k, k) + 2P−1

]−1 [
ψTRLRTψ

]

×
[
V

′′
(x∗k, k) + 2P−1

]−1

(A.11)

with ψ and L as defined in the statement of
the theorem. To derive this last expression, we
have used the assumption that yk − ŷ(x∗k) is
approximately a white noise and that W

′′
(x∗k, k)

exists and is regular.

If we take result (A.10) (after replacing Ex̂k
V (x̂k)

with V (x̂K), the only observation we have of
it) and combine it with (A.11), we obtain the
approximation (12). ✷
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