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Abstract: This paper shows how to take the quality of the state estimation into
account in the formulation of the optimization criterion for model predictive control
(MPC). This is relevant for the control of nonlinear plants, for which the separation
principle in general does not apply. The method is illustrated on an example which is
locally weakly unobservable at the reference state.
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1. INTRODUCTION

Model predictive control (MPC) has found wide-
spread application, particularly in the chemi-
cals processing industry and refineries. Originally,
MPC was proposed using linear plant models,
with constraints on inputs and states (or outputs)
being the only type of nonlinearity that was ad-
dressed. However, in the last two decades, there
has been a number of publications on MPC using
nonlinear process models (Allgöwer et al., 1999)
and a number of actual industrial applications
using such nonlinear models (Qin and Badg-
well, 2003).

The typical academic publication on nonlinear
MPC focuses on developing stability guarantees
in the face of plant nonlinearities, based on the
assumption that the plant states are available
either through direct measurements or through
the use of a state estimator.

In the processing industries, which has seen the
bulk of MPC applications so far, one seldom en-
joys the luxury of being able to measure all states
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directly. One therefore has to resort to some sort
of state estimation, the Extended Kalman Filter
(EKF) or Receding Horizon Estimation (RHE)
being the estimators most commonly proposed.

Although the control methodology (nonlinear
MPC) and state estimation methodology (EKF /
RHE) are powerful, this approach totally ignores
the fact that the separation principle in general
does not apply to nonlinear plants. In (Imsland
et al., 2003) and (Adetola and Guay, 2003) it is
shown how the performance of an output feedback
NMPC controller can achieve the performance
and region of attraction of a state feedback NMPC
controller. However, these results are restricted
to highly specific nonlinear model structures and
requires very high observer gains.

This paper shows how to take into account the
quality of the state estimate in the formulation of
the optimization problem for the MPC. In previ-
ous work, Yan and Bitmead (2002) have shown
how to include the quality of the state estimate
into the constraint formulation for MPC. Here we
will in include the effects of manipulated variable
moves on the state estimate covariance in both the
constraints and the optimization criterion. This



will of course result in control moves that differ
from those that would be obtained if the estima-
tion accuracy was ignored, i.e., it will ’degrade’ the
control to obtain more accurate state estimates.
However, insisting on accurate control based on
inaccurate state estimates is not very meaningful.
The proposed modification is clearly only relevant
for nonlinear plants, since for linear plants the
quality of the state estimation is independent of
the control action.

In section 2 the model predictive control formu-
lation is presented, and the state estimation ap-
proaches (EKF and RHE) are presented briefly.
The proposed control and estimation method is
illustrated on a simple example in section 3. The
properties of the proposed MPC formulation are
addressed in section 4. The final section presents
conclusions and points out directions for further
work.

2. MPC AND STATE ESTIMATION
FORMULATIONS

2.1 MPC formulation

The MPC formulation is based on a discrete
nonlinear state space model of the type

xk+1 = f(xk, uk) + wk (1)

yk = g(xk, uk−1) + vk (2)

where x is the state vector, u is the input vector,
y is the measurement vector, whereas w and v

are state excitation noise and measurement noise,
respectively. The noise sequences are assumed
to be Gaussian white noise. The subscript is
a sampling time index. It is assumed that the
measurement is obtained before calculating the
new value for the input for a given sample interval,
therefore yk may depend on uk−1 but not on uk.

The proposed MPC may be formulated as

min
[
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k

,uT
k+1
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such that

Hcxk+i + Gcuk+i + Lcσc,k+i ≤ bc

xk+i = f(xk+i−1, uk+i−1)

The matrix Pk+i is the à posteriori EKF state
covariance matrix at time k + i. This will some-
times be denoted Pk+i|k+i to clearly distinguish
it from the à priori covariance matrix Pk+i|k+i−1.
Although the EKF state covariance matrix is not
an exact representation of the state probability
distribution for nonlinear systems, it is a measure
of state estimation accuracy that can be obtained
with relative ease. Note also that Pk+i is easily
predicted along a future state trajectory. The vec-
tors υm are typically chosen to be orthonormal,
and allow using different weights on the state co-
variance for different directions of the state space.
In the constraint equations, σc,k+i represents the
predicted standard deviation of the state estimate
in the direction of relevance for constraint c. No
constraint can be guaranteed to hold in the future
if the plant is subject to stochastic inputs (at least
if these stochastic inputs are unbounded, as is the
case for Gaussian noise). However, by including
the standard deviation of the state estimate in
the constraints, one has a handle for tuning the
controller to ensure an acceptable probability for
constraint violation.

The vectors xr and ur are reference vectors for
the states and manipulated inputs, respectively.
These reference vectors are assumed to be known
à priori.

To enable efficient computation in on-line ap-
plications, there is a practical requirement that
the optimization problem must be solvable within
one sampling period. Therefore, MPC optimiza-
tion problems are in general formulated as LP
or QP problems. Problems with significant non-
linearities are typically approximated by QP prob-
lems, with line search along the solution vector
to improve both the accuracy and the rate of
convergence to the solution (Biegler, 1998). Fur-
ther improvements in accuracy may be obtained
by using the result of one QP with line search
as the starting point for a new optimization, if
computing power and available time allow.

In Eq. (3), it is the non-linear plant model which
makes the optimization problem differ from a
standard QP problem. For linear plant models
(subject to Gaussian noise) the state estimate co-
variance matrix and corresponding state estimate
standard deviation would be independent of the
future input and state trajectories.

In order to approximate Eq. (3) with a QP prob-
lem, we will linearize the plant model around
given future state and input trajectories, denoted
by x0

k+i and u0
k+i, respectively. Typically, these

future state and input trajectories are obtained
from by simulating of the non-linear plant model
np timesteps into the future, starting from the
current state estimate xk, and applying the ’tail’
of the vector of manipulated variables obtained



at the previous time step (assuming zero state
excitation noise wk+i). In addition to providing
future trajectories for the states and manipulated
variables, such a simulation can also provide nom-
inal future values for the EKF state covariance
matrix P 0

k+i. Thus, the nonlinear plant model,
Eqs. (1,2), are replaced in the approximate QP
problem by the time varying linear model

xd,k+i+1 = Ak+ixd,k+i + Bk+iud,k+i (4)

yd,k+i = Ck+ixd,k+i + Dk+iuk+i−1 (5)

The subscript d on the measurements, states, and
manipulated variables indicate that these are here
the deviations from the values around which the
linearization is performed.

Having thus ’removed’ the non-linearity in the
constraints that are caused directly by the nonlin-
ear plant model, we must next do the same for the
predicted values of the state covariance matrix in
the optimization criterion, and the state standard
deviation in the constraints. This is done by a
Taylor series expansion around the nominal future
state and manipulated variable trajectories. We
will henceforth adopt the more economic notation

χ = [xT
d,k+1, · · · , xT

d,k+np
]T

ν = [uT
d,k, · · · , uT

d,k+np−1]
T

χ0 = [(x0
k+1)

T , · · · , (x0
k+np

)T ]T

ν0 = [(u0
k)T , · · · , (u0

k+np−1)
T ]T

Thus, we get

υT
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1

2
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, and ddPm,k+i is the corresponding
matrix of second partial derivatives
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The vectors υm are independent of states and
manipulated variables, and the evaluation of the
partial derivative matrices defined above therefore
requires the evaluation of the partial derivatives of
Pk+i. To do this, we need to start from the familiar
EKF covariance equations

Pk+i|k+i−1 = Ak+i−1Pk+i−1|k+i−1A
T
k+i−1 (8)

+ W

Pk+i|k+i = Pk+i|k+i−1 (9)

− Pk+i|k+i−1C
T
k+iMCk+iPk+i|k+i−1

where M = (V + Ck+iPk+i|k+i−1C
T
k+i)

−1. The
next step is to differentiate the linearized model
equations around the predicted future state and
input trajectories. Note that the linearized model
equations will only depend on the state and input
values at the same timestep. The effects of states
and inputs at previous timesteps are accounted for
through the model equations themselves, whereas
future states and inputs obviously cannot have
any effect. On the other hand, the EKF state
covariance matrix will depend on deviations from
the nominal state and input trajectories at pre-
vious time steps, through the EFK covariance
equations above.

Thus, we have
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Here the index j refers to a particular element of
the state or manipulated variable vector at time
k + i. Note the time index on u in Eq. (13) above.
This reflects the assumed order of execution of
tasks at each sampling instant:

(1) Obtain measurements.
(2) Update state estimates.
(3) Calculate new manipulated variables.

Thus, the manipulated variable that are applied at
the time when yk+i is obtained, is actually uk+i−1.

Tedious, but straight forward application of ma-
trix calculus will then produce the needed partial
derivatives dPχ,m,k+i, dPν,m,k+i, and ddPm,k+i.
Due to space limitations, this derivation is omit-
ted from the paper.

What remains before the MPC problem can be
formulated is to linearize the state standard devi-
ation in the constraints in Eq. (3). Thus, we use
the approximation

σc,k+i ≈ σ0
c,k+i +

[

∂σc,k+i

∂χ

∂σc,k+i

∂ν

] [

χ

ν

]

(14)

Let hr
c be row r of the matrix Hc in Eq. (3). The

standard deviation of the states in the direction



perpendicular to the constraint boundary is then

σr
c,k+i =

√

hr
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T (15)

Thus,
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Hence, we will also here require partial derivatives
of Pk+i w.r.t. states and manipulated variables.

Everything is now ready for formulating an ap-
proximation to Eq. (3) as a QP problem. The
required manipulations are fairly standard, and
are not repeated here. The MPC computations at
each timestep are organized as follows:

(1) The ’tail’ of the manipulated variable vector
from the previous timestep is used as an
initial guess for the solution.

(2) This manipulated variable sequence is ap-
plied to the nonlinear model in Eq. (1), and
the model is linearized around the manipu-
lated variable and the state trajectories.

(3) The QP problem is formulated and solved.
(4) A line search along the solution vector from

the QP problem is performed. In the line
search, the actual nonlinear model and non-
linear predictions of the EKF covariance ma-
trices are used.

2.2 State estimation

Two related approaches are used for state esti-
mation, the Extended Kalman Filter (EKF) and
Receding Horizon Estimation (RHE).

For the EKF, standard formulae are used, using
local linearizations of the system dynamics. The
EKF can be found in many textbooks on advanced
control.

For RHE, a formulation similar to the constrained
linear Moving Horizon Estimator of Rao (e.g.
(Rao, 2000)), is used. That is, a QP formulation is
used to approximate the observed system outputs
over the estimation horizon, with the linearized
equations describing the system dynamics as con-
straints. The free variables in the optimization
are measurement and state excitation noise se-
quences, and the state at the beginning of the
estimation horizon. The arrival cost (i.e., weight
on the state at the beginning of the estimation
horizon) is based on the EKF covariance, as de-
scribed by Rao (2000).

The QP problem gives us a state excitation noise
sequence, as well as the change from the à priori to
the à posteriori state estimate at the start of the
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Fig. 1. Results when using no weight on the EKF
state covariance estimate .

estimation horizon. For any multiple of these QP
outputs, the system may be simulated using the
nonlinear system model, and the corresponding
measurement noise sequence required to obtain
the observed measurements can be calculated.
This is used in a line search procedure after
solving the QP problem, in much the same way as
line search is commonly used in nonlinear MPC.

3. EXAMPLE

The method is applied to a simple example, given
by

xk+1 = xk + 0.1xkuk + uk + wk (17)

yk = x3
k + vk (18)

The state excitation noise w is assumed to be
Gaussian with variance 0.01, whereas the mea-
surement noise v has variance 0.1. The MPC has
prediction horizon np = 10, state weight Qk+i = 2
for i = 1, · · · , 9, Qk+10 = 10, and Rk+i = 1.
All simulations are started from an initial state
x0 = 0.5 and a small initial state covariance
P0 = 0.01. Figure 1 shows the results when not
taking the covariance of the state estimate into
account (ρi = 0 in Eq. (3)). The state estimation
is performed with an Extended Kalman Filter.
We see that the controller quickly controls the
estimated state to zero. Once the estimated state
is zero, the system is no longer observable, and
the EKF can no longer correct for the observed
offset between actual and predicted measurement.
Consequently, the state starts to drift. In Fig. 2
we see the corresponding results when a value of
ρi = 0.3 is used. The manipulated variable starts
moving when the state covariance starts becoming
large. This moves the state estimate into a region
where the system is observable, and the EKF
can correct the state. It may not be immediately
obvious that the performance achieved in Fig. 2 is
better than that achieved in Fig. 1. However, over
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Fig. 2. Results when using the weight ρi = 0.3 on
the EKF state covariance estimate .

a sufficiently long operating period, the actual
state in Fig. 1 may drift arbitrarily far from the
reference, whereas this does not happen in Fig. 2.

If the state estimate in Fig. 2 has drifted any
significant distance from the reference (at which
the system is unobserable), the gain from state
to measurement will be much larger at the actual
state value than at the estimated state. The EKF,
using a model linearized around the estimated
state, therefore modifies the state estimate exces-
sively. This is particularly evident just after 300
timesteps in Fig. 2. Figure 3 shows the results
obtained when using Receding Horizon Estima-
tion with an estimation horizon of 10. The main
difference between the performance of the EKF
and the RHE is here that a line search along
the solution vector is used in the RHE. Since
the nonlinear model is used in the line search,
the overcorrection that was evident in the EKF
is significantly reduced. On the other hand, a
somewhat more ’noisy’ state estimate is obtained,
leading to more active use of the manipulated vari-
ables. Nevertheless, Fig. 3 clearly shows the best
performance among the three cases shown here.
Note that since the measurement function is the
state cubed, the overshoot shown in Fig. 2 would
appear much more dramatic if the measurement
and not the state were shown.

4. PROPERTIES OF THE PROPOSED
METHOD

In this paper, a method is proposed for taking the
quality of the state estimate into account in the
optimization problem in MPC. This consideration
is only of relevance for nonlinear systems; It is well
known that the control and estimation problems
can be separated for linear systems. The theo-
retical properties of this type of MPC controller
has not been extensively studied. However, some
relevant issues are discussed below.
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Fig. 3. Results when using the weight ρi = 0.3
on the EKF state covariance estimate in the
MPC, while RHE is used for state estimation.

4.1 Asymptotic stability

A formal stability analysis for the type of MPC
controller presented here is likely to be hard.
Clearly, this type of controller will not result
in an asymptotically stable closed loop system,
if the system is not observable at the reference
state xr (and corresponding input ur). This is not
a shortcoming of the proposed control method,
though, it merely means that the system needs to
be excited (i.e., moved away from the reference
state) in order to update the state estimate. For
acceptable control to be achievable, it must be
possible to obtain acceptable state estimates in a
region not too far from the reference state.

4.2 Computational issues

4.2.1. Boundedness of solutions Obviously, it
is a practical requirement that the solution to
the optimization problem should be bounded. For
convex QP problems this is automatically ensured
by the shape of the objective function itself. For a
non-convex problem, this must be ensured by the
constraints. Applying maximum and minimum
value constraints to the manipulated variables
will automatically ensure this. For most problems,
such constraints are imposed by the physics of the
problem anyway.

4.2.2. Required computation time Typical MPC
formulations are formulated as LP or convex QP
problems. For the method proposed here, it is
possible that the problem can loose convexity if
the EKF state covariance estimate grows so large
as to dominate the cost of control error and ma-
nipulated variable moves. Non-convex QP prob-
lems are generally ’np-hard’, meaning that the re-
quired time to guarantee that the optimal solution
is found will in general grow exponentially with
problem size. Thus, it may take unacceptably long



to find the global optimum even for problems of
moderate size. However, this does not imply that
it will necessarily take long to find an acceptable
solution. The constraints used in this MPC for-
mulation are linear, and thus finding a feasible

starting point is no harder than with traditional
MPC formulations. Any gradient-based optimiza-
tion code can then be used to find a local optimum
– what is hard is to ascertain whether such a
local optimum is also globally optimal. Even if
a solution that is only locally optimal is used in
the control, the resulting control performance may
well be acceptable.

4.2.3. The need for line search If the weight
on the EKF covariance matrix is set to zero, the
objective function is by construction convex, i.e.,
it resembles a ’bowl’ in shape. Consider a case
where the plant is locally weakly unobservable at
the reference state, like in the example above.
Keeping the (estimated) state at the reference
will then necessarily mean that the state covari-
ance grows with time. With a non-zero weight
on the covariance matrix, this will first flatten
the bottom of the bowl described by the objec-
tive function, and then introduce a ’hill’ around
the reference state. Formulating the optimization
problem as a QP problem means that we are
locally fitting a quadratic function to approximate
the true objective function. Fitting the quadratic
function to the top of the ’hill’ in the bottom of
the ’bowl’ can clearly lead to gross errors when the
solution is based on the fitted quadratic function
only. Performing a line search along the direction
specified by the solution vector is the standard
way to guard against this type of problems in
nonlinear optimization.

5. CONCLUSIONS AND FURTHER WORK

This work presents a novel way of including state
estimate quality into the MPC formulation. It rep-
resents a significant extension of the work of Yan
and Bitmead (2002). A topic for further research
is to extend this approach to simultaneous state
and parameter estimation, which would a step
towards a dual MPC controller, since it has the
capability to generate probing signals to better
identify states and parameters. This will also in-
troduce back-off from constraints due to uncertain
model parameters, while the controller will ac-
tively probe the control plant in order to identify
the parameters. Note that in this extension of our
work, the probing will only be active when pa-
rameter estimates are uncertain, and the probing
will only excite directions affected by the uncer-
tain parameters. This is in contrast to the Model
Predictive Control and Identification (MPCI) for-
mulation proposed in (Shouche et al., 2002), which

imposes a persistence of excitation constraint, and
hence excites all model directions continuously.

The MPC formulation proposed herein does re-
quire heavy on-line computation. Further research
is needed to analyze how the resulting optimiza-
tion problem can be solved efficiently. Emerging
results on explicit MPC formulations for nonlin-
ear systems (see e.g. Johansen (2002)) appears
to be a promising direction for further research.
This approach may also provide more control on
the degree of sub-optimality of the implemented
controller.
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