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Abstract: A new method for eliminating parameter drift in parameter estimation
problems is proposed. Existing methods for eliminating parameter drift work either
on a limited time horizon, restrict the parameter estimates to a range that has to be
determined à priori, or introduce bias in the parameter estimates which will degrade
steady state performance. The idea of the new method is to apply leakage only in
the directions in parameter space in which the exciting signal is not informative. This
avoids the problem of parameter bias associated with conventional leakage.
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1. INTRODUCTION

Parameter drift is a well known problem in param-
eter estimation problems where the exciting signal
is not sufficiently rich. The parameters estimated
will typically converge to a manifold in parameter
space on which the observed relationships between
the input and output data are well explained.
Noise in the observed data will then cause the
parameter estimates to drift along this manifold
in parameter space.

When the parameter estimates are used in an
adaptive controller, the parameter drift will be
unproblematic until parameter values are ap-
proached for which the model becomes uncon-
trollable. When this happens, bursting occurs.
Bursting involves violent moves in the input as
the controller attempts to control a plant which it
erroneously thinks is close to uncontrollable, with
corresponding large moves in the controlled out-
put. The bursting typically supplies the param-
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eter estimation algorithm with informative data,
causing the parameter estimates to move to more
reasonable values, from which the parameter drift
starts anew.

There is a substantial literature on parameter drift
and avoidance of bursting. Common modifications
are the use of a deadzone in the parameter update,
or the use of leakage. With a deadzone, the pa-
rameter updates are stopped as long as the model
follows the observed system behaviour with rea-
sonable accuracy. This will reduce the parameter
drift, which can only occur when the parameter
update is active, but will also reduce the accuracy
with which the observed system behaviour can be
approximated by the model.

With leakage, on the other hand, one adds an
extra term in the parameter update law which
drives the parameters towards a particular choice
of reference values. Sufficiently strong leakage can
eliminate bursting, but will bias the parameter
values toward the chosen reference values. A good
portion of luck is required for the reference values
for the parameters to accurately describe the



observed input-output behaviour of the system,
and hence leakage typically degrades steady state
performance.

In this work, the properties of the exciting signal
and the structure of the model is used such that
the leakage is applied only in the directions in
parameter space in which the input-output data is
not informative. Hence, steady state performance
is not degraded by the applied leakage.

1.1 Preliminaries

This section defines notation and states some es-
tablished results on parameter estimation. Much
of the material in this section is extracted from
Ioannou and Sun (1996), where a more compre-
hensive treatment of parameter estimation and
adaptive control can be found. We consider the
estimation of model parameters for linear, time-
invariant plants. The plant model is expressed as
an nth-order difference equation given by

yk+n+ an−1yk+n−1 + · · · + a0yk =

bn−1un−1 +bn−2un−2 + · · · + b0u (1)

Obviously, this corresponds to the discrete trans-
fer function representation

y(z) =
bn−1z

n−1 + bn−2z
n−2 + · · · + b0

zn + an−1zn−1 + zn−2zn−2 + · · · + a0
u(z)

= g(z)u(z) (2)

The unknown parameters are lumped in a param-
eter vector

θ = [b0, b1, · · · , bn−1, a0, a1, · · · , an−1]
T (3)

and all input-output signals are collected in the
signal vector

φk−1 = [uk−n, uk−n+1, · · · , uk−1,

−yk−n,−yk−n+1, · · · ,−yk−1]
T (4)

Thus, Eq. (1) can be compactly expressed as

yk = φT
k−1θ (5)

In a practical situation, measurements will be
corrupted by noise. Therefore it is commonplace
to filter both yk and φk−1 in the equation above
with a common low pass filter. However, in order
to keep the presentation simple, we will ignore
such filtering in most of the analysis to follow.

Let θ̂ denote an estimate of the parameter vector
θ, and θ̃ = θ − θ̂ denote the corresponding
parameter error vector. The observed model error
is denoted e, and is given by

ek = yk − φT
k−1θ̂k−1 = θ̃T

k−1φk−1 (6)

1.2 The gradient method

We choose an instantaneous optimization crite-
rion of the form

J(θ̂k) =
1

2
(yk − φT

k−1θ̂k)2

+
c

2
(θ̂k − θ̂k−1)

T (θ̂k − θ̂k−1) (7)

Differentiating with respect to θ̂k we obtain

(

dJ

dθ̂k

)

=−(yk − φT
k−1θ̂k)φk−1 + c(θ̂k − θ̂k−1)

=−ekφk−1 + φT
k−1(θ̂k − θ̂k−1)φk−1

+c(θ̂k − θ̂k−1) (8)

Setting the gradient to zero, and noting that (cI+
φk−1φ

T
k−1)

−1φk−1 = 1
c+φT

k−1
φk−1

φk−1, we obtain

the standard equation error parameter estimation
algorithm

θ̂k = θ̂k−1

+
1

c + φT
k−1φk−1

φk−1

(

yk − φT
k−1θ̂k−1

)

(9)

We have from Eq. (5) that Eq. (9) in the absence
of measurement noise may be expressed as

θ̃k = θ̃k−1 +
1

c + φT
k−1φk−1

φk−1φ
T
k−1θ̃k−1 (10)

The matrix φφT is clearly singular (of rank 1) at
any one time instant. Equation (10), on the other
hand, contains 2n integrators. It might therefore
appear as if there is only one integrator (or linear
combination of integrators) that is stabilized by
feedback, and that the remaining integrators are
left to integrate the noise in the measurement
signal. However, if the systematic variation in
φ is such that the sum of φφT over any time
interval [k, k + t] is positive definite, there is actu-
ally negative feedback around all the integrators
in Eq. (10). This results in an asymptotically
stable parameter estimation, with the estimated
parameters in the absence of measurement noise
converging to the true values at steady state.

The requirement that the sum of φφT should be
positive definite is the familiar persistent excita-

tion requirement. The problem of parameter drift
and the bursting that results from it arise when
the persistent excitation requirement is not met.

1.3 Least squares parameter estimation algorithm

The least squares parameter estimation algorithm
with exponential data weighting results from re-
cursively minimizing the optimization criterion



JL(θ̂k) =
1

2

k
∑

t=1

βk−t(yt − φT
t−1θ̂k)2

+
1

2
βk(θ̂k − θ̂0)Π

−1
0 (θ̂k − θ̂0) (11)

starting from a given initial parameter guess θ̂0

and a positive definite Π0. Here β (0 < β ≤ 1)
is known as the exponential forgetting factor,
and is normally chosen to be slightly less than
1. It is shown in, e.g., Goodwin and Sin (1984)
that minimizing Eq. (11) results in the recursive
scheme

θ̂k = θ̂k−1

+
Πk−2φk−1

β + φT
k−1Πk−2φk−1

[

yk − φT
k−1θ̂k−1

]

(12)

Πk−1 =
1

β

[

Πk−2 −
Πk−2φk−1φ

T
k−1Πk−2

β + φT
k−1Πk−2φk−1

]

(13)

Choosing β = 1 results in no forgetting of old
data. As a result, Πk will approach zero, and the
parameter estimation will essentially turn itself
off. A consequence will be that the parameter
estimation will be unable to track even slow pa-
rameter variations. To avoid this problem, one
may choose β slightly smaller than 1. Whereas this
makes the tracking of slow parameter variations
possible, it also gives room for parameter drift
in cases where the exciting signal is not suffi-
ciently rich. It is well know that an excitation
signal containing m sinusoids is sufficiently rich

of order 2m, i.e., will allow accurate estimation
of 2m parameters (or 2m linear combinations of
parameters).

2. DIRECTIONAL LEAKAGE

In this section we will propose a method for
performing parameter updates in the subspace
of parameter space for which the I/O data is
informative, while preventing parameter drift by
implementing leakage in the orthogonal subspace.
We will first consider the gradient method for
parameter estimation, and thereafter consider the
least squares method. For both parameter estima-
tion methods, stability is analyzed using averag-
ing, in a manner similar to that of (Bitmead and
Johnson, 1987).

2.1 Directional leakage with the gradient method

After selection of a basis for the informative
subspace, and collecting the basis vectors in a
matrix Υ, this is achieved simply by modifying
the parameter update equation Eq. (9) as follows

θ̂k =

θ̂k−1 + P
1

c + φT
k−1φk−1

φk−1φ
T
k−1

(

θ − θ̂k−1

)

+rP⊥

(

θref − θ̂k−1

)

(14)

where 0 < r < 1, P = Υ(ΥT Υ)−1ΥT is a
projection matrix and P⊥ = I − P its orthogonal
complement (and P⊥ is itself a projection matrix).

We can decompose the dynamics of the parameter
estimation described by Eq. (14) into directions
driven by input-output data and directions driven
by the leakage, by premultiplying both sides of
Eq. (14) by P and P⊥, respectively.

P θ̂k = P

(

I −
1

c + φT
k−1φk−1

φk−1φ
T
k−1

)

θ̂k−1

+P
1

c + φT
k−1φk−1

θ (15)

= PHk−1θ̂k−1 + PGk−1θ

P⊥θ̂k = P⊥(1 − r)θ̂k−1 + rP⊥θref (16)

The dynamics in the directions described by
Eq. (16) are trivially asymptotically stable, and
have a steady state described by P⊥(θref −θ∞) =
0. The dynamics described by Eq. (15) require
more careful analysis.

Assuming that φk−1φ
T
k−1 is in the range of P ,

and that P is of rank 2m (where m < n),
PHk−1 has 2(n−m) eigenvalues at the origin (the
singular directions of P ), one eigenvalue inside
the unit disk, and the remaining eigenvalues at
+1. One therefore has to study the evolution of
the parameters over several timesteps to conclude
about stability. Considering an entire oscillation
period for the input signal, i.e. s = τ/T timesteps,
one obtains

P θ̂k+s =

k+s−1
∏

i=k

PHiθ̂k+

k+s−1
∑

i=k

(

k+s−1
∏

l=i+1

PHl

)

PGiθ

(17)
The system signals are repeated every s timesteps,
and therefore the stability of the parameter esti-
mation will depend on

∏k+s−1
i=k PHi. To simplify

notation, denote 1
c+φT

i−1
φi−1

by εi and φi−1φ
T
i−1 by

Xi. For sufficiently large c, we have εi ≈ ε << 1∀i.
Tedious, but straightforward calculation 2 then
results in

k+s−1
∏

i=k

Hi = P − P (εkXk + εk+1Xk+1 + · · ·

+ εk+s−1Xk+s−1)P + O(ε2
s(s − 1)

2
) (18)

2 We will require the technical assumption PXk = XkP ,

which will be fulfilled by our subsequent choice of P .



Provided ε s(s−1)
2 << 1, the linear term in Eq. (18)

will dominate. Thus, the parameter estimation
will be asymptotically stable provided the rank
of P (Xk +Xk+1 + · · ·+Xk+s−1)P equals the rank
of P . Thus, we have to determine which basis
to use as the columns of Υ, to ensure that this
rank condition holds. Classical results on sufficient
richness of signals provide us with the dimension
of the informative subspace, i.e., the number of
columns in Υ. A straightforward approach is to
sum φT φ over some window of past data with
window length of some multiple of s timesteps.
The singular vectors corresponding to the 2m
largest singular values of the resulting matrix can
then be chosen as the range space of P . In the
ideal case (in the absence of noise) this would lead
to a time invariant projection matrix P once the
effects of initial conditions have died out.

Example 1. The idea of using directional leakage
is illustrated using a simple example with g(z) =

b
z+a

. The input is a unit step signal (corresponding
to ω = 0 ⇒ z = 1), and is thus sufficiently rich
to estimate only one parameter. It is well known
that in this situation only the steady state gain,
g(1) = b

1+a
can be estimated. The true parameters

in this example are given by a = 0.7, b = 0.7.
The estimation is simulated in Simulink, and the
measurement is corrupted with white noise with
power 0.1. The estimation is simulated both with
no leakage, and with directional leakage. Initial
parameter estimates are a = 2, b = 6 in both
simulations. In the simulations, both input and
output are low pass filtered through identical low
pass filters f(z) = 1

z+0.8 .

The results without leakage are shown in Fig. 1.
The estimation quickly converges to parameter
values giving the correct steady state gain (the
straight line in the figure), and then starts to
drift while staying close to the correct steady state
gain.

The results obtained when using directional leak-
age are shown in Fig. 2. The reference values θref

are chosen equal to the initial parameters. The
parameter estimates converge to a point on the
line indicating the correct steady state gain, and
no significant parameter drift can be found.

2.2 Directional leakage with the least squares

parameter estimation method

It was noted above that without exponential for-
getting the least squares parameter estimation
method will eventually turn itself off. Thus, pa-
rameter drift and leakage (whether directional or
not) only become relevant when β < 1.

Introducing directional leakage in Eq. (12) we
obtain
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Fig. 1. Results for example 1 when using no
leakage.
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Fig. 2. Results for example 1 when using direc-
tional leakage.

θ̂k = θ̂k−1 +

{

P
Πk−2φk−1

β + φT
k−1Πk−2φk−1

×

[

yk − φT
k−1θ̂k−1

]}

+ P⊥(θref − θk−1)(19)

whereas Eq. (13) in principle remains unchanged.
However, it is clear from Eq. (19) that the matrix
Πk−2 affects the gain of the parameter estimation.
With exponential forgetting, Πk−2 may become
very large in directions that are poorly excited -
and even grow without bounds in directions that
are not excited at all. We will therefore impose
an upper limit on each of the singular values of
Π. Other (and less computationally demanding)
methods for keeping Π bounded are discussed in
(Goodwin and Sin, 1984).

Proceeding with the analysis for the exponentially
weighted least squares, we arrive at an equation
mirroring Eq. (17) above. However, we here get
that Hi = I − 1

β+φT

k−1
Πk−2φk−1

Πk−2φk−1φ
T
k−1. In

evaluating
∏k+s−1

i=k PHi, we then face the prob-
lem that in general Πk+m and φk+nφT

k+n do not
commute. We are therefore unable to arrive at an
equally simple expression as in Eq. (18). Instead,
we obtain

k+s−1
∏

i=k

Hi = P − P (εkΠkXk + εk+1Πk+1Xk+1 +

· · ·+ εk+s−1Πk+s−1Xk+s−1)

+ O((ε̄Π̄)2
s(s − 1)

2
) (20)



where here εi = 1
β+φT

i−1
Πi−2φi−1

whereas Xi =

φi−1φ
T
i−1 as before. The symbols ε̄ and Π̄ rep-

resent average values of εi and Πi, respectively.
We find that for sufficiently small Π̄, the linear
term in Eq. (20) will dominate, here ε̄ may well
be close to 1. A sufficiently small Π̄ is obtained
by choosing a forgetting factor β close to 1, and

effectively constraining growth of Π in directions
that are insufficiently excited. It should be noted
that in the directions in the input-output data
that are poorly but persistently excited, Π may
grow large unless β is very close to 1 or the
singular values of Π are properly constrained.
Still, we can conclude from Eq. (20) that given
a sufficiently small Π̄, the parameter estima-
tion will remain asymptotically stable provided
rank(P ) = rank(P (εkΠkXk + εk+1Πk+1Xk+1 +
· · · + εk+s−1Πk+s−1Xk+s−1) Since Πi is positive
definite for all i, this rank condition is essentially
equivalent to the rank condition found for the
gradient method.

Example 2. The use of directional leakage will
next be illustrated used on a problem in adaptive
control. The plant is given by

g(z) =
2z − 1.8

z3 − 2.78z2 + 2.5715z − 0.79135
(21)

The control objective is to track the reference
signal

r(t) = sin(
2πt

360
) + sin(

2πt

45
) (22)

Thus, we have five unknown parameters, whereas
the reference signal would only be sufficiently
rich to identify four parameters. There is also
an additive measurement noise, modelled as a
normally distributed, zero mean random variable
with standard deviation 0.04. The control design
is accomplished using adaptive pole placement,
using a discrete version of the method described
in (Ioannou and Sun, 1996). A sampling interval
of 1 is used, and all poles of the closed loop
characteristic polynomial are placed at z = 0.7.
For the parameter estimation, state variable filters
for both inputs and outputs equal to f(z) =

1
(z−0.8)3 are used. The estimation is done with the

least squares method with a forgetting factor β =
0.998. The singular values of Π are constrained to
be no larger than 1e − 4. The initial parameter
estimates correspond to the transfer function.

ĝ(z, θ̂) =
2(z − 0.91)

(z − 0.99)(z − 0.93)(z − 0.86)
(23)

Although these initial parameter values would ap-
pear to be quite good, initial control performance
is appalling. The performance quickly improves,
and good performance is obtained after a short
initial transient. Luckily, this paper addresses long
term rather than initial behavior, and parameter
estimation rather than control. Similar control
performance is obtained for the simulated time
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Fig. 3. Typical control performance for Exam-
ple 2. Solid: noise-corrupted measurement,
dashed: reference signal.
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Fig. 4. Estimates of parameter b0 in Example 2.
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Fig. 5. Estimates of parameter b1 in Example 2.

period both without leakage and with directional
leakage. Figure 3 may represent the typical control
performance for both cases. The results (Figs. 4 -
8) show that the parameter estimates drift when
no leakage is applied. When directional leakage
is applied, the noise does affect the parameter
estimates, but no parameter drift can be seen. The
effect of the noise that is seen in the parameter
estimates appear have no effect on the control
performance. However, the effect of noise may be
reduced by reducing the maximum singular value
bound for the covariance matrix, and/or using a
larger forgetting factor. The forgetting factor of
β = 0.998 corresponds to a time constant for
forgetting of 500 samples. This may appear to be
somewhat too fast when the signal to be tracked
has a sinusoid of period 360.

3. DISCUSSION AND CONCLUSIONS

This paper has focused on the gradient and least
squares methods for parameter estimation. Note
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Fig. 6. Estimates of parameter a0 in Example 2.
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Fig. 8. Estimates of parameter a2 in Example 2.

that other parameter estimation algorithms, in-
cluding parameter estimation using the Extended
Kalman Filter, suffer from the same parameter
drift problems whenever the system is not suffi-
ciently excited and tracking of time-varying pa-
rameter values is desired. ’Conventional’ leakage
is a simple method for eliminating drift, but un-
fortunately conventional leakage results in bias in
the parameter estimates. This paper shows how
leakage can be applied only in the directions in
parameter space where the plant is not properly
excited. This stabilizes the parameter estimation
(stops parameter drift) without degrading param-
eter estimation accuracy in the directions where
the input-output data is informative.

It was noted previously that bursting will occur if
the parameter estimates approach a hypersurface
in parameter space where the model is uncontrol-
lable. Although directional leakage, when properly
tuned, makes the parameter estimation asymptot-
ically stable, that does not rule out the possibility
that during the initial transient the parameters
may encounter such an uncontrollable hypersur-

face. For problems where this is a serious con-
cern, directional leakage may easily be combined
with so-called parameter projection (Ioannou and
Sun, 1996), which constrains the parameter esti-
mates to stay within an à priori defined region
of the parameter space where the true model is
assumed to lie, and which is also assumed to be
free of uncontrollable hypersurfaces.

Thus, despite the advantages of directional leak-
age noted above, it does not totally eliminate the
problem of bursting. Note, however, that such
bursting during initial transients may also occur
when the exciting signals are persistently exciting,
if the initial parameter estimates are ill-chosen.
Therefore, any failure to prevent bursting during
transient conditions should not be considered a
shortcoming of (directional) leakage - it is simply
not the problem it is intended to prevent.

The use of a dead-zone (see, e.g., (Egardt, 1979))
in the parameter estimation is a common way of
reducing parameter drift. The dead-zone reduces
parameter drift by stopping the parameter update
when model predictions are close to the physical
measurement. Directional leakage, on the other
hand, does not stop parameter estimation when
the model output is close to the measurement.
Since leakage is applied only in the directions
in parameter space where the signals are not
informative, the asymptotic model accuracy is not
affected. Directional leakage should therefore be
an attractive alternative to the use of dead-zones.
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