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Abstract: We describe an approach that is useful in deciding if significant benefits in 
terms of control loop performance index will be achieved by a change in control loop 
configuration from simple feedback (SFB) to cascade control. The problem is considered 
in a stochastic setting and solved using the Analysis of Variance (ANOVA) technique. 
The proposed methodology requires only routine operating data and knowledge of the 
process delay. Three simulation examples exemplify the utility of this approach. 
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1. INTRODUCTION 

 
Cascade control is probably the single most 
important performance enhancement strategy over 
simple feedback loops. The potential improvements 
in performance possible and the ease of its 
implementation has led to its widespread use in the 
chemical process industries for over five decades 
now. Using extra output measurement(s) (in addition 
to the primary controlled variable), the cascade 
control scheme provides timely and calculated 
adjustment of the manipulated variable thereby 
decreasing the peak error as well as the integral error 
for disturbances affecting the process. The efficiency 
of the cascade control schemes in handling 
disturbances entering the inner loop has been well 
documented in several research articles and 
textbooks. What is relatively less appreciated is the 
fact that cascade control provides better performance 
(as compared to the single loop case) for all types of 
load changes. While the improvement for 
disturbances entering close to the process input (i.e. 
secondary disturbances) can be 10 to 100 fold, the 
improvement in performance for disturbances 
entering late into the process (i.e. primary 
disturbances) is about 2 to 5 times (Webb, 1961; 
Harriott, 1984).  Marlin (2000) provides an excellent 
review of the principles of cascade control, details 
the criteria for cascade design and shows several 
industrial examples. It is shown that the cascade 
scheme provides practical benefits only if the 
secondary process is at least three times faster than 
the primary process even for disturbances entering 
the inner loop. Krishnaswamy et al., (1990) relate the 
benefits afforded by cascade control to the 

parameters of the primary and secondary process 
models in a deterministic setting. 

Industrial control loops are designed and 
implemented in order to achieve specific objectives. 
It is important to monitor the performance of these 
loops periodically and make sure they provide the 
best possible performance. In this regard, the 
performance monitoring of control loops has 
received much attention in the last decade. Many 
researchers have used the minimum variance 
controller (MVC) performance as the benchmark – 
this benchmark is appropriate if the goal of control is 
the reduction of the variance in the controlled 
variable (the variance of the manipulated variables, 
the complexity of the MVC or its robustness is not of 
concern). Harris (1989) showed that the minimum 
variance achievable (with a MVC) can be computed 
from routine operating data if the process time delay 
is known. Since then, there has been a multitude of 
research articles (e.g. Desborough and Harris, 1992; 
Stanfelj et al. 1993; Huang et al. 1997) that consider 
important extensions, alternate benchmarks (Tyler 
and Morari, 1996; Kendra and Cinar, 1997; Swanda 
and Seborg, 1999), applications (Thornhill et al.,
1999) and industrial perspectives (e.g. Kozub, 1996; 
Desborough and Miller, 2001) on this topic. The user 
is also referred to the exceptional coverage provided 
by Huang and Shah (1999) and Qin (1998) to this 
topic. Recently, Agrawal and Lakshminarayanan 
(2003) described a method to determine the control 
loop performance achievable with PI type 
controllers, the optimal control settings that will yield 
the “best” performance and the expected robustness 



     

margins using closed loop transfer functions 
identified from closed loop experimental data. 

Ko and Edgar (2000) established the basis of 
performance assessment of cascade loops. 
Desborough and Harris (1993) established a 
procedure to separate the variance contributions into 
components related to the controller and the 
disturbances by developing an analysis of variance 
(ANOVA) technique. Vishnubhotla et al. (1997) 
applied the ANOVA method to investigate the need 
for feedforward control on data sets provided by 
Shell, USA.  

The study here is related to cascade loops. The 
scenario we consider is as follows: we have a process 
that is presently regulated by a simple feedback 
(SFB) controller. A control loop monitoring tool has 
flagged this loop as poorly performing when 
compared to MVC.  We take a closer look at this 
loop and assess if the loop is performing to its full 
potential by taking into consideration factors such as 
the restricted structure of the controller – this is 
important because PID type controllers that are so 
common in the chemical process industries cannot 
provide minimum variance performance under many 
practical situations. Let us assume that such an 
analysis finds that the present controller is doing its 
best. If even better control performance is sought, the 
choices available are: (i) making process 
modifications or (ii) changing the controller 
structure. Two obvious enhancements to the SFB 
scheme are feedforward and cascade control. 
Feedforward control is more appropriate when 
measured disturbances are available. Cascade control 
is suited when suitable secondary measurements (the 
secondary measurement must be influenced by the 
manipulated variable; it must also have a direct 
impact on the primary variable) are available.  Such a 
scenario has been mentioned in Stanfelj et al. (1993). 
Note that if the analysis had shown that the SFB loop 
is not performing as good as is possible, then 
retuning of the feedback controller would have been 
initiated.  

In this paper, we assume that we are not satisfied 
with even the best performance that the SFB control 
system can provide and we would like to estimate the 
benefits that will accrue by migrating from SFB 
control to cascade control. Feedforward scheme is 
not an option due to the lack of measured 
disturbances. Routine operating data from the SFB 
control system will be utilized to perform an 
ANOVA decomposition of the process variance and 
speculate about the possible success of the cascade 
scheme.  

This contribution is structured as follows. In the next 
section, we outline the basics of the performance 
assessment for simple feedback and cascade loops. 
We then discuss the ANOVA procedure as applied to 
a simple feedback loop and indicate the components 
of the variance that can be eliminated using cascade 

control. Examples will be used to demonstrate the 
utility of the proposed methodology. 

2. THEORY 

Consider the SFB control system shown in Figure 1. 
y1 and y2 represent the disturbance corrupted outputs 
of the primary and the secondary process  
respectively. The primary process is denoted 

by 1
1d

1 T
~

qT −= where d1 denotes the number of 
samples of time delay in the primary process and 

1T
~

represents the delay free part of T1. Along the 
same lines, the secondary process T2 is represented as 

2
2d

2 T
~

qT −= . Q represents the feedback controller; 
N1 and N2 denote the disturbance transfer functions 
driven by zero-mean white noise sequences a1 and a2

respectively; disturbance a1 is “closer” to the primary 
variable y1 and disturbance a2 is in proximity to the 
secondary variable y2. ‘u’ represents the manipulated 
variable. 

Figure 2 shows a cascade system controlling the 
same process. In this case, Q1 represents the primary 
controller and Q2 represents the secondary controller. 
u2 represents the manipulated variable that is set by 
the secondary controller Q2. The setpoint for Q2

comes from the primary controller Q1.

For a disturbance a2 entering the system at t = 0, the 
output y1 will be disturbed from ‘time’ d1 onwards. 
The controller Q in the SFB case will initiate control 
action at t = d1. The effect of this control action will 
be felt at y1 only from (2d1+d2) onwards.  y1 will 
effectively be in open loop between d1 and (2d1+d2-
1) samples.  Under the cascade control system, Q2

will initiate control action at t = 0, and the output y1

will be in open loop condition only between d1 and 
d1+d2-1 samples. If d1 is large, the cascade scheme 
will provide better regulation of y1 for the secondary 
disturbance a2. Next, consider the ‘primary’ 
disturbance a1 entering the system at t = 0. The 

Q

N2

2
2 ~

Tq d−

N1

1
1 ~

Tq d−

a1(k)a2(k)

u(k) y2(k) y1(k)

Y1,sp(k) = 0

+
+

+ +
+

-
Q

N2

2
2 ~

Tq d−

N1

1
1 ~

Tq d−

a1(k)a2(k)

u(k) y2(k) y1(k)

Y1,sp(k) = 0

+
+

+ +
+

-

Figure 1: Simple Feedback System
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Figure 2: Cascade Control System 



     

primary controlled variable will remain in an open 
loop condition between t = 0 to t = d1+d2-1 for both 
the SFB and the cascade control system. In going 
from a SFB to a cascade scheme, we can hope to 
eliminate the effect of a2 between t = d1+d2 and t = 
2d1+d2-1. This does not mean that no more 
reduction in variance is possible as we change from 
SFB to cascade control. This aspect will be clarified 
later.

For the SFB, the closed loop relationship between 
the external signals and the output y1 is given by: 

2
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1 a
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For the cascade scheme, this relationship is modified 
to:  
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with 
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For the SFB control scheme, the minimum variance 
is now computed.  The disturbance and process 
transfer functions are expanded as follows:  

( )2d1d
111 qRPN +−+=                  (2.3) 

( )2d1d
222 qRPN +−+=                (2.4) 

( )2d1d
12 VqST
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where P1 and P2 are monic polynomials (for N1 and 
N2 respectively) in q-1 of order d1+d2-1.  

In equation (2.3), N1 is expanded into two parts P1

and R1q
-(d1+d2). When noise a1 enters the process at 

time 0, the controller action would not have any 
effect on y1 until time d1+d2-1; this makes P1 a 
feedback invariant term. In equation (2.4), N2 is 
expanded into two parts P2 and R2q

-(d1+d2). Note that 
the noise a2 entering at time 0 will upset y2 from time 
0 to d1+d2-1 irrespective of any controller action.  
For our purposes, the effect of a2 on y1 is of interest. 

Therefore, in equation (2.5), the product of P2 and 1

~
T

is expanded into S and Vq-(d1+d2), where S is a 
polynomial of order d1+ d2–1. 

The closed loop transfer function shown in equation 
(2.1) can be divided into a feedback invariant part 
and feedback dependent part as shown in the 
following: 
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From equation (2.6), the minimum variance can be 
written as 

( )2
1d

11
2

SFB,mv aSqaPvar −+=σ              (2.7) 

For the cascade control system shown in Figure 2, 
the minimum variance can be computed as: 
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with polynomial P1 as defined in equation (2.3) and 
S2 is a polynomial of order d2-1 defined by equations 
(2.9) and (2.10). 
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Remark 1: The only difference between 2
SFB,mvσ  and 

2
CAS,mvσ  is in the term related to the secondary 

disturbance a2.

Lemma: The d2–1 coefficients of the polynomial S2

will be the same as the first d2-1 coefficients of the 
polynomial S. 

Next, we seek to perform an analysis of variance for 
the SFB system. The variance of the primary 
controlled variable y1 should be separated into an 
invariant component and a feedback dependent 
component. The result of this analysis would help in 
deciding if restructuring existing SFB system into 
cascade control system will be beneficial. In short, 
we are interested in predicting the cascade 
achievable performance.

The feedback invariant part for the SFB control 
system is given by 
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(2.11) 
If a cascade control system were to be established, 
the feedback invariant part would be: 
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In equations (2.11) and (2.12), the H1’s refer to the 
closed loop impulse response coefficients 
(analytically determined or identified from routine 
operating data) for the primary disturbance affecting 
y1. The H2’s refer to the closed loop impulse 
response coefficients for a2. These coefficients are 



     

estimated by performing a multivariate 
autoregressive modelling using y1 and y2

measurements.  In the SFB case, the first 2d1+d2 
terms (H20 to H2d1+d2-1) are used while in the cascade 
case only the first d1+d2 terms (H20 to Hd1+d2-1) are 
used. Keeping this difference in mind, the feedback 
invariant for simple feedback system can be split in 
to two parts as 

1a) SFB and cascade invariant and 
1b) Additional SFB invariant  

The first part is defined as “SFB and Cascade 
invariant” – this variance component cannot be 
altered either by a simple feedback controller or a 
cascade control system. The second part labeled as 
“Additional SFB invariant” contains the variance 
contribution due to non-availability of the secondary 
controller. It is assumed that this contribution to 
overall variance can be reduced to zero if a perfect
secondary controller is available. The invariant part 
of the SFB can hence be rearranged as follows 
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The variance component ‘1b’ is given by 
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where 2

2aσ is the estimated variance of secondary 

noise a2.

We are now ready to analyze the feedback dependent 
variance or remainder variance. The feedback-
dependent part can also be separated into two distinct 
parts:  
2a) Variance arising due to noise sequence a1

2b) Variance arising due to noise sequence a2.

For single feedback control system, the feedback 
dependent part is 
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The individual terms in equation (2.15) can be used 
to determine the contributions to the variance in y1

from the primary and secondary noise channels. 

In summary, the total variance of the primary 
controlled variable (y1) for a SFB system with an 
additional secondary output measurement y2 can be 
split into four parts: 

1a) The SFB and cascade invariant components 
1b) Additional SFB invariant.  
2a) Remainder variance due noise sequence a1.

2b) Remainder variance due to noise sequence a2

Out of these four parts, the cascade scheme should 
ideally eliminate (or reduce considerably) the 
variance contribution from two terms: 1b and 2b. The 
cascade strategy is designed specifically to reduce 
the overall time constant and delay to deal with a 
situation where the major disturbance hits the 
secondary process and minor stochastic disturbances 
hits the primary process. Hence the reason for 
elimination of variance contribution arising from 1b 
and 2b components can be easily understood. In 
addition, the cascade control scheme can reduce a 
portion of the variance attributed to component (2a). 
The exact amount of reduction possible with 
component (2a) is not easy to ascertain. We have 
noted in our simulations that a significant decrease 
(about 50% or more in all of the examples we have 
worked on) in the variance contribution due to a1 (2a 
part) is also achieved along with practical elimination 
of the 1b and 2b components. The reduction in the 
variance contribution from the (2a) component in the 
cascade scheme could be due to one or more of the 
following reasons:

1) The severe control action applied by the primary 
controller along with the higher gain in secondary 
controller compared to SFB scheme effectively 
attenuates the primary disturbances  (Harriott, 1984).  

2) In the single loop system, the primary controlled 
variable (y1) and the disturbance (a1) are more tightly 
coupled than is desirable. The output y1 will follow a 
load change a1 too readily. In the cascade system, y1

and a1 are loosely coupled (Webb, 1961).  

3) The multiple lags in the feedback path of the SFB 
causes the control action to be delayed. Hence the 
variance of y1 remains large. These lags are greatly 
reduced in the cascade system so that any effect of a1

on y1 is greatly reduced (Webb, 1961).  

SFB and Cascade invariant 

Additional SFB invariant 

Feedback-dependent from a1

Feedback-dependent from a2



     

3. EXAMPLES 

Three simulation examples are used to demonstrate 
the utility of the proposed ANOVA method for 
predicting the possible improvement in control loop 
performance if cascade control is implemented and 
also for choosing the secondary variable (in case 
more than one candidate exists). 

Example 1: The primary process (Gp1), the secondary 
process (Gp2), the primary noise transfer function 
(N1), and the secondary noise dynamics (N2) used in 
this example are given below. In this example, the 
noise dynamics affecting the primary process is 
purposefully kept severe compared to noise 
dynamics affecting the secondary process, to check 
the effectiveness of cascade in rejecting severe 
primary disturbance compared to secondary 
disturbance.
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The PI achievable performance for the SFB is 
computed to be 0.29. With this “optimal” SFB 
control system, the variance of y1 is 12.89; the 
breakup into the 1a, 1b, 2a and 2b components is 
3.71, 4.03, 0.8 and 4.36 respectively. Components 1b 
and 2b are substantial – they make up about 65% of 
the variance in y1. These are the components that can 
be targeted and reduced by the cascade control 
strategy. The analysis makes a strong case for 
implementing a cascade control scheme. 

When a PI-P cascade scheme is implemented, the 
best CLPI achieved is 0.81. The improvement in 
performance index is about 200% and vindicates the 
prediction made by the ANOVA approach. With the 
PI-P cascade implementation, the variance in y1 is 
4.59; the breakup into the 1a, 1b, 2a and 2b 
components is 3.71, 0.45, 0.25 and 0.19 respectively.
Note that there has been a substantial decrease (about 
70%) in the 2a variance component also. 

Remark 2: The proposed ANOVA approach uses 
only routine operating data; it cannot therefore 
predict the settings of the primary and secondary 
controller at which the optimal cascade loop 
performance is achieved. If suitable experimental 
data (collected either under open or closed loop 
conditions) is available and the process models are 
identified, the “optimal” settings of the primary and 
secondary controller leading to the best control loop 
performance can be obtained using parametric 
optimization. 

Example 2: The transfer functions used in this 
example are: 
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The PI achievable performance for the SFB scheme 
is 0.43. At this “optimal” performance, the variance 
of y1 is 55.52; the breakup into the 1a, 1b, 2a and 2b 
components is 23.95, 0.16, 30.86 and 0.55 
respectively. The 1b and 2b components are small 
indicating that the benefits from a cascade control 
system should mainly come from the reduction of the 
2a component, which accounts for about 56% of the 
total variance here. On the basis of our experience, 
we can predict that at least 50% of component 2a will 
be annihilated. We would expect the 2a component 
with the cascade scheme to be about 15 and the 
variance in y1 to reduce to around 40. A more precise 
answer to the expected reduction in 2a component is 
not possible. 

When a PI-P cascade scheme is implemented, the 
best CLPI achieved is 0.63. With the PI-P cascade 
implementation, the variance in y1 is 39.71; the 
breakup into the 1a, 1b, 2a and 2b components is 
24.99, 0.23, 13.94 and 0.55 respectively. Note that 
there has been a significant decrease in the 2a 
variance component. The overall increase in CLPI is 
47%; this may be enough to justify the 
implementation of the cascade scheme. 

Example 3: The system considered next is described 
by the following equations: 
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Here, y1 is the primary controlled variable and y2 and 
y3 represent possible secondary variables. U is the 
manipulated variable; a1, a2 and a3 represent zero 
mean white noise sequences with variances 

2
3a

2
2a

2
1a and, σσσ respectively. The process is 

controlled by a PI controller with Kc = 1 and τI = 40. 
We will examine the ANOVA results for various 
combinations of the noise variances and suggest the 
“best” secondary variable in each of those cases. In 
each case, 5000 samples of routine closed loop data 
sampled at intervals of 1 time unit were used. 

Case 1: 100and1 2
3a

2
2a

2
1a =σ=σ=σ

If y2 is considered as the secondary variable in the 
cascade scheme, the ANOVA estimates the overall 
variance in y1, 1a, 1b, 2a and 2b components to be 
1.38, 0.02, 0.02, 0.03 and 1.31 respectively. If y3

were to be chosen as the secondary variable, these 
values are 1.40, 0.06, 0.02, 0.01 and 1.31 
respectively. In this case, it does not matter whether 
y2 or y3 is chosen as the secondary variable. Since 2b 
component is very strong, cascade control using 



     

either y2 or y3 as the secondary variable will provide 
a vastly improved control loop performance. 
Between y2 and y3, we can choose the one that 
engulfs most of the disturbances as the secondary 
variable. 

Case 2: 100and1 2
1a

2
3a

2
2a =σ=σ=σ

 If y2 is considered as the secondary variable in the 
cascade scheme, the ANOVA estimates the overall 
variance in y1, 1a, 1b, 2a and 2b components to be 
1.83, 0.87, 0.001, 0.94 and 0.02 respectively. If y3

were to be chosen as the secondary variable, these 
values are 1.83, 0.87, 0.002, 0.92 and 0.04 
respectively. The 1a and 2a components are 
dominant in this case. Based on our experience, we 
conjecture that more than 50% of the 2a component 
will be consumed by the cascade scheme that could 
use either y2 or y3 as the secondary variable. Between 
y2 and y3, the choice will depend on their relative 
“location” with respect to the anticipated 
disturbances. 

Case 3: 100and1 2
2a

2
3a

2
1a =σ=σ=σ

 If y2 is considered as the secondary variable in the 
cascade scheme, the ANOVA estimates the overall 
variance in y1, 1a, 1b, 2a and 2b components to be 
0.445, 0.062, 0.014, 0.007 and 0.362 respectively. 
The 2b component is dominant here and a cascade 
control scheme with y2 as the secondary variable can 
eliminate this variance component very effectively.  
If y3 were to be chosen as the secondary variable, 
these values are 0.378, 0.023, 0.000, 0.342 and 0.013 
respectively. Interestingly, with y3 as the secondary 
variable, the 2a component is the dominant one. With 
cascade control we may not be able to eliminate this 
component completely (as much as we can do with 
the 1b or 2b components). In this case, the use of y2

as the secondary variable seems to be a more prudent 
choice. 

4. CONCLUSIONS 

The proposed ANOVA method provides an estimate 
of the variance reduction possible by moving from a 
SFB scheme to a cascade scheme using only routine 
operating data and knowledge of the process time 
delays. Our simulations show that it is possible to 
achieve this predicted cascade achievable 
performance with a PI-P configuration or a PI-PI 
(when the secondary noise is non-stationary) cascade 
scheme. 
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