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Abstract 
Abstract ：In this paper, adaptive neural-network predictive control strategies for general 
nonlinear systems are presented. The system is described by an unknown NARMAX 
model and neuro model is used to on-line learn the system. Despite state/parameter esti-
mation, the neural predictive control scheme associated with the constrained optimization 
framework is implemented in a straightforward manner. Through the Lyapunov stability 
analysis, the network weight adaptation rule is derived, and guarantees the minimum er-
ror between the neuro output and plant output. An unstable reactor system is given to 
demonstrate the effectiveness of the proposed control schemes. Copyright © 2004 IFAC 
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1. Introduction 
 

 Research on neural-network-based control sys-
tems has received a considerable attention over the 
past several years [14]. It is because many control 
systems often exhibit strongly nonlinearities, and the 
implicit programming of neural network computing 
architectures is able to accurately approximate any 
nonlinear function. Since uncertain nonlinear sys-
tems without complete model information are usu-
ally called as “black boxes”, the widely used struc-
tures of neural-network-based control designs lead to 
problems in nonlinear and adaptive control fashions. 
Ge et al. [5] provided a framework for structured 
dynamic modelling and adaptive control design for 
robots using neural networks, Kulawski and Brdyś 
[9] developed adaptive control technique for nonlin-
ear stable systems using recurrent neural networks, 
and Calise et al. [2] presented an adaptive output 
feedback design procedure, where the design em-
ployed the feedback linearization coupled with an 
on-line neural network.  

 As it is mentioned above, the neuro identification 
process turns out to be of the central parts in con-
structing feasible adaptive controllers. However, the 
adaptive control combined with neuro-identifier 
would reduce the efficient and reliable computation 
due to the hybrid convergence manner. Recently, 
Poznyak et al. [17] indicated that ‘dynamic’ neural 
network architectures were successfully used to 
enhance tracking controllers, Poznyak et al. [18] 
proposed optimal adaptive controller based on on-
line 

 

learning of the neural-network parameters to realize 

the good tracking performance, Ku and Lee [10] 
developed a diagonal recurrent neural network to 
generalize the structure of the tracking controllers, 
and Gao et al. [3] provided a qualified real-time 
implementation to elaborate the merit of the diagonal 
recurrent neural network. Obviously, the adaptive 
neuro-based identifier can create robust training 
algorithms and reinforce the robustness of adaptive 
control techniques [23].  

 Recently, the study of neuro-optimizers has been 
mentioned in order to make the system identification 
more efficient, and the neural network is more ex-
pected to determine controller parameters. Whereas 
the predictive control technique is a dynamic optimi-
zation approach to control problems, and the flexible 
constraint-handling capability makes it most suitable 
for process control problems, Lazar and Pastravanu 
[11] indicated that the neural predictive control 
could reduce the significant obstacles encountered in 
conventional model predictive control (MPC) appli-
cations, Noriega and Wang [16] developed the adap-
tive neural-network control scheme within the un-
constrained optimization framework, Vila and 
Wanger [20] used the feedforward neural network 
(FNN) to generate a constrained optimal control at 
each time step, and Wang and Wan [21] provided 
the high computational demand in solving the opti-
mization problems associated with the MPC tech-
nique and structured neural network approach. In 
other respects, Hoo et al. [6] established a reliable 
estimate by incorporating directional information to 
improve the predictive capability of neural network 
models, and Ahmed and Tasadduq [1] developed 
neural servocontroller for a nonlinear multi-input 
multi-output (MIMO) system with the strong inter-
action of the input-output pairs. 



 
2

 In this paper, the flexible predictive control strat-
egy using on-line neuro-based adaptation is devel-
oped. The control design procedure is implemented 
to highly nonlinear systems in the presence of pa-
rameter uncertainties and input constraints, that does 
not rely on state/parameter estimation. The resulting 
implementation of neural predictive controller is able 
to ensure a rapid and reliable solution to the control 
algorithm, so it is superior to ‘deterministic’ model-
based predictive control applications.  
 

2. Problem Statement 
 

 Consider the discrete-time uncertain system de-
scribed by the NARMAX model [4] is shown as  

))1(,),1(),(               
),1(,),1(),(()1(

+−−

+−−=+

mkukuku
nkykykyfky p

"
"

          (1) 

where u(k) and y(k) are measurable scalar input and 
output, respectively. n is the number of past outputs 
used, m is the number of past inputs used, and )(•pf  
is the unknown nonlinear difference equation repre-
senting the system dynamics. Since the neural net-
work architecture can provide the accurate approxi-
mation, the off-line model identification is recom-
mended that the training procedure for a class of 
FNN architectures corresponding to the NARMAX 
model associated with adequately delayed inputs and 
optimum weights is addressed [16].  
 

2.1 Off-line neuro identification 
 

 The neural NARMAX model is given by  
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where )(ˆ •f  represents the input-output transfer 

function of the neural network, yd  and ud  are the 
transport delays of the input space, and the vector 
forms are shown as 
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Remark 1. The model orders for the input and output 
and delays need to be determined for the non-
recurrent neural modeling [22]. In this paper, a 
three-layer FNN with one net output and n+m+1 
input is given by [13] 

])[()()(ˆ BTITO WzWWzf += σ                       
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where [ ]TTT ,,YUz 1= , and the activation function 

)(•σ  is set as  

)tanh()( aa zz =σ , ℜ∈az                                       (5) 

)1( ++×ℜ∈ nmmIW  is the first-to-second layer intercon-
nection weight, mOW ×ℜ∈ 1  is the second-to-third 
layer interconnection weight, and 1×ℜ∈ mBW  is the 
threshold offset. In general, the learning algorithm 
consists in sequentially adjusting the network 
weights for the minimal mean squared error between 
the nominal NARMAX model )(•pf  and the neural 

NARMAX model )(ˆ •f . Moreover, the time valida-
tion test of the FNN model is employed for new 
input signals required. Through the off-line training 
and validation algorithms, the nominal FNN model 
is established and provides a stable input-output 
representation of neural networks.  
 

2.2 Neural predictive control algorithm 
 

  The objective of the predictive control strategy 
using FNN model is twofold: (i) to fulfill the output 
feedback control design and (ii) to minimize an ob-
jective function with a quadratic penalty function. 
Thus, the FNN model-based control problem is de-
scribed by   
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subject to input constraint   

maxmin )( ujuu ≤≤ , j=k, …, 1−+ uNk .                   (7) 

where u∆  presents the manipulated variable incre-
ment, uN  is the control horizon, yN  is the predic-
tion horizon, r is the reference trajectory, and λ  is 
the weight factor. minu  and maxu  represent lower 
and upper bounds, respectively. The output of FNN 
model is shown as 

]~)~[()~()( BTITO
NN WzWWiy += σ , i=k,…, 

yNk +  (8) 

( BIO WWW ~,~,~ ) in (11) represent optimal values of 
the network weights. Note that the update of weights 
is corrected during the off-line training procedure. 

Remark 3. Obviously, the above augmented objec-
tive function has been shown in [8, 13]. Because the 
quadratic problem (QP) framework is a nonlinear 
algebraic equation, the optimization toolbox in the 
Matlab environment provides the accurate computa-
tion. Inspired by the issue in [11], the one-step-ahead 
predictive control approach for the QP framework 
with yN =1 and the single parameter λ  in (9) would 
induce a uniformly convex function so that a rapid, 
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reliable solution to the control algorithm can be 
achieved.  

Remark 4. The tuning scheme of FNN model-based 
predictive control usually depends on the number of 
output prediction yN  and the weight factor λ . 
However, the tuning parameter yN  cannot effec-
tively improve the control performance when the 
FNN model cannot be faithful representation of the 
uncertain system. Consider that the control horizon 

uN  is one and the control action is bounded by (10), 
Kambhampati et al. [7] indicated that the one-step-
ahead predictive control design with the addition of 
the penalty function could be implemented to an 
open-loop unstable process.  
 

3. Adaptive Neural-Network Predictive Controller  
 

 In fact, the above FNN model-based identifica-
tion cannot instantly capture the real dynamic behav-
ior. In this section, the on-line training procedure 
associated with network weight adaptation rule is 
utilized to establish an adaptive neural-network pre-
dictive control. 
 

3.1 On-line neuro identification 
 

 An approach for on-line identification using the 
FNN-based predictive model in (11) is presented. 
The current square error between the plant output 
and the neural output is defined as  
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and the learning law by a gradient method [17] for 
the minimization of )(kEm  is written as  
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Obviously, from (13) and (14) it is a typically dy-
namic backpropagation (DBP) algorithm. According 
to the FNN architecture in (11), the learning rules of 
the weights are obtained as follows: 

(1)  Output weights: 
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(2)  Input weights: 
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where )())((')( kzkskQ jiij σ≡  and 0)0( =ijQ . 

(3) Bias weights: 
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where ))((')( kskR ii σ≡  and 0)0( =iR . 

Remark 5. All weights are split up into the three-
layer FNN architecture, Those tuning algorithms are 
used in the on-line fashion. The on-line update of the 
weights captures changes in the process dynamics. 
Apparently, the DBP algorithm can be treated as an 
adaptation approach. Referring the traditional adap-
tive mechanism in [19], the performance of those 
learning rules will rely critically on the choice of the 
learning rate η . However, the development of 
guideline in selecting the learning rate is omitted 
here due to the similar results which have been 
stated in [10]. For a small value of η , the conver-
gence is guaranteed but its rate is slow. Oppositely, 
the too big η  will induce the unstable updating algo-
rithm. In the next demonstrated examples depend on 
the on-line tuning scheme for the parameter λ  but 
the learning rate η  is fixed.  
 

3.2 Control algorithm 
 

 Inspired by the neural predictive control strategy 
in (9) and the DBP algorithm in (15)-(17), the one-
step-ahead predictive controller using the on-line 
neuro identification is described by  
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subject to the current input constraint 

maxmin )( ukuu ≤≤                                                    (17) 

where the one-step-ahead FNN model is written as 

])[()()1(ˆ BTITO
NN WzWWky +=+ σ                    (18) 

( BIO WWW ,, ) in (18) represent updated network 
weights connected to optimal network weights in (11) 
as initials.  

Remark 6. Obviously, the control scheme is dynamic 
and adaptable. Since the solution for minimization of 

2J  is explicit, the DBP algorithm can provide the 



 
4

asymptotic convergence by adjusting a proper pa-
rameter η . Under the one-step-ahead predictive 
horizon and input constraint, the optimizer not only 
carries out the minimal tracking error, i.e., 

)()()(ˆlim krkykyNNk
≈≈

∞→
, but also the tuning pa-

rameter λ  directly affects the closed-loop tracking 
performance and stability. Moreover, this adaptive 
neural-network predictive control (ANNPC) archi-
tecture is depicted in Fig. 1. 
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+
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Fig. 1 Adaptive neural-network predictive con-

trol scheme. 
 

4. Application to a Reactor System  
 

 A continuous stirred tank reactor (CSTR), in 
which an exothermic irreversible first-order reaction 

)( BA →  takes place, is covered with a coolant 
stream flowing in a cocurrent fashion. The coolant 
flow rate is chosen to be manipulated input and the 
coolant temperature is allowed to vary along the 
length of the cooling coil [15]. Under the mass and 
energy balance, the dynamics of this CSTR model 
can be described as 
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where AC  is the effluent concentration of compo-
nent A, T  is the reactor temperature, q  is the feed 
flowrate, and cq  is the coolant flowrate. The nomi-
nal system parameters and operating point for the 
reactor are given in Table 1. Under input constraint 
by )minl(120)minl(80 11 −− ≤≤ cq ,  the control 
objective is to regulate AC  by manipulating cq .  

Table 1 Nominal CSTR operating conditions 
 min l  100 -1=q

-1
Af l mol  1=C

K  350f =T
K  350cf =T

l  100=V
-1-15 Kmin cal  107 ⋅×=hA

-110
0 min  102.7 ×=k

K 1095.9/ 3×=RE
-15 molcal 102 ×=∆− H

-1
c l g  1000 , =ρρ

-1-1 Kg cal  1 , ⋅=pcp CC
-1min  41.103=cq

K  2.440=T
-12

A l mol  1036.8 −×=C
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Fig. 2 Closed-loop output tracking responses for 

the reactor system, in the case of using the 
unconstrained FNNPC and PID control-
lers 

 

 According to the neural predictive control strat-
egy in Section 2, Fig. 2 shows that the FNN-based 
predictive control (FNNPC) design can confirm 
better tracking performance than the conventional 
PID control approach. By the issue in [15], the PID 
controller parameters are 112 min/moll  190 −− ⋅=cK ,  

min  556.0=Iτ ,  and min  827.0=Dτ . For the 
output regulation of perturbed systems, the adaptive 
neural-network predictive control (ANNPC) in Sec-
tion 3 is used. Under a small learning rate 002.0=η  
for the on-line neuro adaptation, we find that the 
update of weights can keep a rapid, convergent 
manner. Fig. 3(a) depicts that the unconstrained 
ANNPC design can carry out the satisfactory distur-
bance attenuation for +20% change in the inlet con-
centration AfC . However, Fig. 3(b) shows that the 
optimization-based control connected to the on-line 
adaptation procedure could cause the over-large 
control action. Within the constrained OP frame-
work in (18), Fig. 4 shows that by adjusting λ  the 
satisfactory output tracking subject to an unsaturated 
control action is superior to the PID control. More-
over, the same ANNPC design for unknown distur-
bance attenuation is depicted in Fig. 5. Obviously, 
the simulation demonstrates that the proposed 
ANNPC method is relatively robust against un-
known disturbances. 
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Fig. 3 Disturbance rejection for step change in 

feed concentration, in the case of using the 
unconstrained ANNPC and PID control-
lers 
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Fig. 4 Closed-loop output tracking responses for 

the reactor system, in the case of using the 
constrained FNNPC and PID controllers 
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Fig. 5 Disturbance rejection for step change in 

feed concentration, in the case of using the 
constrained ANNPC and PID controllers:  

 

5. Conclusion 
 

 In this work, predictive control strategies associ-
ated with FNN-based adaptation mechanism for 
constrained SISO and MIMO nonlinear systems are 
addressed. The discrete-time learning procedure 
enforce the minimal error between the FNN model 
output and plant output, and the one-step-ahead pre-
dictive control design can carry out the stable output 
regulation in spite of unknown disturbances. Defi-
nitely, the performance and robustness of the pro-
posed control schemes have been successfully veri-
fied by a strongly nonlinear reactor system.  
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