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Abstract: The present work is a method of plant testing for the purpose of
open-loop system identification and model-based control of chemical processes,
in particular, model predictive control (MPC). It is a multivariable test technique
using plant-friendly and optimal amplitude binary multi-frequency signals, in con-
junction with multivariable parametric modeling techniques, to achieve significant
time savings in plant testing by comparison with traditional step testing and even
other multivariable testing methods in the literature.
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1. INTRODUCTION

The widely accepted empirical way to characterize
the dynamics of a system is to apply perturbation
signals at the input channels and measure the
response of the system to these signals. The input
and output signals are then processed to give
the required estimate of the dynamics of the
system. This procedure is well known as system
identification.

In much of the literature on system identification,
little attention has been paid to the perturbation
signal design itself, other than to the fact that the
signals should be persistently exciting. In the case
of linear systems this means effectively that the
signal should adequately span the bandwidth of
the system being identified. One of the main rea-
sons for this lack of attention has been the empha-
sis in the literature on identification techniques
for parametric models. The main focus has been
on discrete transfer function models of single-
input single-output (SISO), linear, time-invariant
systems. Under these circumstances, there is not

usually a great deal to choose among different
perturbation signal designs. However, this is quite
an idealized situation in most applications and, in
practice, many questions on signal design issues do
in fact arise. These questions are generally associ-
ated with how to establish a suitable compromise
between persistent excitation and plant friendli-
ness during test, how to reduce the testing time
without compromising the information needed,
e.g., for control design, process monitoring, etc.

On the issue of system identification for model
predictive control (MPC), a more recent interest
has emerged in the automatic control community.
However, in practice, traditional step testing is
still adopted by and large in open-loop data col-
lection for MPC modeling.

Step testing assumes that only one input channel
is moved at a time. Each step move is held for a
relatively long length of time. In (Boyden, 1999) it
is recommended that each input move should be
held for an average of half the process settling time
and a series of 15 — 20 moves should be executed



for each input. In terms of their frequency char-
acteristics, step signals tend to emphasize steady-
state behavior and do not focus, therefore, on the
closed-loop (faster) behavior. This means that a
model with poor dynamic properties may be ob-
tained. The plant testing time estimate for MPC,
tiest, corresponding to this step testing technique
can be expressed by the following formula:

trest = (8...10) x IV x Ty (1)

where IV is the number of independent variables,
i.e., the sum of manipulated inputs and measur-
able disturbances and T is the process settling
time. Naturally, ¢ can become prohibitively
long for systems with long process settling time
and/or large # of independent variables. For some
applications in our experience, this number can
easily vary between 1 to 2 months depending
on the particular process characteristics. This
excessive plant testing time generally translates
into practical and economical infeasibility of MPC
projects.

Besides step testing, single and multivariable
PRBS testing have become quite popular in the
more recent literature on system identification
for process control. Some relevant work includes
(Cott, 1995a; Cott, 1995b; Gaikwad and Rivera,
1994; Koung and MacGregor, 1994; Ljung, 1998;
Rivera et al., 1990; Zhan, 1999; Zhu, 1998). In
(Cott, 19954a) the author describes a benchmark
problem proposed in the Process Identification
Workshop at the 1992 Canadian Chemical En-
gineering Conference. Both industrial and aca-
demic participants in the workshop were chal-
lenged to identify models for the benchmark prob-
lem by using different perturbation signal designs
and system identification techniques. Most of the
participants utilized pseudo-random binary sig-
nals (PRBS) with different design characteristics.
In (Zhu, 1998) the author proposes the use of
PRBS as part of the so-called asymptotic method
(ASYM) of system identification. In (Gaikwad
and Rivera, 1994) and (Rivera et al., 1990) the
authors make use of PRBS as perturbation signals
for system identification. In (Koung and MacGre-
gor, 1994) the authors rotate input signals in an
attempt to better capture uncertainties in the pro-
cess steady-state gains. The signals used as the ba-
sis for this design are PRBS. Thus, PRBS, which
started as a periodic signal generated in the time-
domain through shift register circuitry, received a
frequency-domain interpretation and a multivari-
able design which made it attractive for system
identification purposes. Nonetheless, PRBS dis-
plays several weaknesses that have been reported
in the literature (Cott, 1995a; Cott, 1995b; God-
frey, 1994).

Other types of time-domain periodic signals have
found little application so far. These are referred

to as multi-level pseudo-random signals (also
known as m-signals) (Docter, 1999; Zierler, 1959).

Regarding frequency-domain identification, early
work on signal design dates from the 1960s but
most of the relevant papers are much more recent.
However, they appear in journals ranging from
Nuclear Science and Engineering to the Interna-
tional Journal of Control, from Industrial Engi-
neering and Chemistry to International Shipbuild-
ing Progress and in (at least) six different IFEE
Transactions. As a result, this work is not as well
known as it should be. The book edited by Keith
Godfrey (Godfrey, 1994) is a relatively recent ref-
erence that collects some of this material.

In the present work, a thorough study of vari-
ous perturbation signals for system identification,
namely, pseudo-random binary signals, multi-level
pseudo-random signals, sum-of-harmonics signals
(van der Ouderaa et al., 1988; Rivera, 1999)
and binary multi-frequency signals (Van den Bos,
1967; Buckner and Kerlin, 1972; Harris and Mel-
lichamp, 1980; Paehlike and Rake, 1979; Van den
Bos, 1970; Van den Bos and Krol, 1979), was
carried out. The findings of this study led to the
selection of binary multi-frequency (BMF) signals
as perturbation signals for plant test. The factors
that led to this selection will be discussed later.

2. MAIN RESULTS

The main goal of this work is to considerably
shorten plant testing time without compromising,
and actually improving, the obtained model qual-
ity. In order to achieve this goal, the following
steps are used as part of a comprehensive plant
test procedure:

e Determination of Control-Relevant Plant In-
formation

Perturbation Signal Design

Multivariable Plant Test Design
Plant-Friendliness Analysis of the Plant Test
Optimal Input Signal Amplitude Selection
Parametric Data Analysis

Figure 1 is a flowchart of the main elements of the
system identification technique proposed in this
work.

2.1 Control-Relevant Plant Information

Extracting plant information which is relevant for
the purpose of process control has been a topic
of discussion in the literature (see, e.g., (Rivera,
1999)). The approach has been suggested as a
means of enhancing controller performance. In the
present work, this approach has been identified
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Fig. 1. Comprehensive Technique for System Identification. The dashed lines represent a priori knowledge
of the plant used in designing the open-loop, non-iterative experiment. A priori knowledge may
be obtained from a previously identified system of similar characteristics, operations personnel’s
knowledge of the system, a (dynamic) simulator, etc.

as one of the key components in reducing plant
testing time.

Let us consider a first-order process with one input
u(t) and one output y(t). If the input is excited
with a unit step, the output response is given
by y(t) = K(1 — e */7), where K is the process
steady-state gain and 7 is the time constant. By
definition, the process is considered settled when
t > Tys = 57, which implies that 99.33 % of the
response has been attained. However, if t = 47,
98.17 % of the response is still captured and if
t = 37, 95 % of the response is obtained. Thus, for
a first-order process, one can design the signal so
that wy)2““** is then increased to z7—, where § €
[3,5], and still obtain reasonable low frequency
information on the process. Even if the process
is not first order, most chemical processes’ step
responses near a given operating point resemble
those of a linear system and similar arguments
can be used to shorten testing time.

Now the question remains as to what should be
the upper bound on the frequency range useful
for control-relevant system identification. For any
given linear system, a perturbation signal that
spans the bandwidth of the system, ie., w €
[7—, 7—] rad/unit of sampling time, where 740,
is the estimated dominant time constant of the
system, is adequate for the purpose of system
identification if the system is to operate in open-
loop. However, if the purpose of the plant test
is to identify a system suitable for operation in

closed-loop, the closed-loop bandwidth must be
considered instead. If the closed-loop is estimated
to be a > 1 times faster than the open-loop,
then the bandwidth for the system in closed-loop
is given by w € [TL, ——] rad/unit of sampling
time. Therefore, this is the frequency range which
the perturbation signal should span for control-
relevant system identification.

Typically, a assumes values between 2 and 3 but
it could be much higher if the controller is tuned
more aggressively. Therefore, for closed-loop oper-

. process __ (e . . .
ation, wy;op = 75— rad/unit of sampling time.

This frequency window will dictate the minimum
period of the signal used for system identification
and the speed with which this signal should vary.

2.2 Binary Multi-Frequency Signal Design

An excellent compromise between flexibility in
signal power distribution, small peak factor, short
plant test and ability to obtain high signal-to-
noise ratio can be achieved by using the so-called
binary multi-frequency signals (BMF) (Van den
Bos, 1967; Buckner and Kerlin, 1972; Harris
and Mellichamp, 1980; Paehlike and Rake, 1979;
Van den Bos, 1970; Van den Bos and Krol, 1979).
Like the PRBS, these are binary, discrete-interval,
periodic signals with period P = NTj, samples.
Like the sinusoids, these signals display as much
power as possible in certain harmonics specified by



the user. Nearly all designs are for N a power of 2,
which makes it easy to ensure no spectral leakage
using FFT signal processing. However, this is not
a necessity and the only hard restriction on N is
that it is an even number to guarantee that the
signal is zero mean.

Because of the similar periodic auto- and cross-
correlation properties of PRBS and BMF signals
and the larger flexibility in the choice of N for
the BMF, the plant testing time with BMF can
always be made equivalent or shorter than that
with PRBS. Thus, it has been recognized in this
work that one does not pay any penalty in testing
time by having a zero mean signal with a user-
defined power distribution.

The Frequency Domain Identification Toolbozx in
MATLAB has two routines used to generate and
improve a single binary multi-frequency signal.
In these routines, the user is allowed to choose
the power associated with each harmonic in a
specified frequency range. The computation is an
optimization where the signal with the smallest
peak factor and the largest percent of useful power
is computed to match, as closely as possible, the
user-defined power for each harmonic. The main
drawback of these routines is the lack of repro-
ducibility of results since the resulting BMF signal
will change depending on the initial random seed
generated by the software. These different signals
will have correspondingly different peak factor
and power distribution. Therefore, the software
does not necessarily provide the signal with the
best compromise between peak factor and power
distribution and the inexperienced user may end
up with a poor signal selection. In this work these
issues are addressed by improving on the existing
software.

The algorithm used in these MATLAB routines is
discussed in (Van den Bos and Krol, 1979) with

improvement via a search technique described in
(Paehlike and Rake, 1979).

Because the BMF can be designed to concentrate
power in a selected number of harmonics in the
control-relevant bandwidth, it is generally possi-
ble to excite the system as much with a lower am-
plitude BMF as with a higher amplitude PRBS.

The first design requirement on the BMF sig-
nal will be dictated by the need to capture the
process long-term behavior. The lowest frequency
captured by a BMF signal of period P = NT,
is given by w;/?"" = 27— rad/unit of sampling
time. Therefore, the following inequality guaran-
tees that the signal spans the process fundamental

frequency:

; 2 1
wlz;tsut S lporlicess S
NTSU} TSS

= P = NT,, > 21Ts; (2)

Further reduction in testing time can be achieved
if the requirement on the low frequency informa-
tion is relaxed as discussed in section 2.1, i.e.:

P=NT,, > 27r(§)Tss, where 8 € [3,5] (3)

On the high-frequency side, the upper bound on

. process
the control-relevant frequency window, Whigh

should never exceed the Nyquist frequency of
the input signal which corresponds to w)7)* =
WNyquist = 7 rad/unit of sampling time. This
condition generates the following upper bound on
the switching time, T,,:

process « ™
high = WNyquist Taom — Tsw

:>Tsw S WTZOW (4)

Inequalities (3) and (4) together provide the gen-
eral guidelines for the design of BMF signals
for system identification. These requirements on
P and Ty, are the same as for PRBS signals
(Rivera, 1999). The fact that they extend to BMF
signals is a new finding and it comes from the
qualitative similarities between the periodic auto-
correlation function (ACF) properties of BMF and
PRBS signals.

An important additional degree of freedom in the
BMF signal design is the signal power distribu-
tion over the harmonics that the signal spans.
By properly designing the BMF signal, a signal
with relatively small (large) T, can still invest
a reasonable amount of power at lower (higher)
frequencies. This allows for a very tailored design
of the perturbation signal for each individual ap-
plication.

2.3 Multivariable Plant Test Design

The BMF signals described in section 2.2 were
used to design a new multivariable plant test. The
multivariable nature of the plant test based on
BMF signals proposed here is a key contributor to
plant testing time reduction. As discussed in sec-
tion 1, multivariable designs for perturbation sig-
nals for system identification are known for PRBS
and Schroder-phased sinusoids. The multivariable
statistically uncorrelated designs for PRBS and
Schroder-phased sinusoids are based on time and
frequency domain arguments, respectively.

In the present work, time-domain characteristics
of the BMF signal, namely, the periodic auto-
and cross-correlation functions (ACF and CCF),
dictate the multivariable design in spite of the
frequency-domain origin of the signal. This is a
novel approach to multivariable plant test design
using a frequency-domain based signal and gener-
ating uncorrelated copies in time-domain.

The multiple BMF signals are designed so as
to ensure the smallest possible periodic unbiased



CCF between input pairs during one process set-
tling time Ts,. In order to achieve this goal, the
guidelines imposed by equations (3) and (4) are
still relevant but may be replaced by more con-
servative inequalities.

In order to obtain m BMF signals with the small-
est possible periodic CCFs, the initial (“mother”)
BMF signal is generated and m — 1 delayed copies
of this signal are created. Therefore, a new pa-
rameter appears in the MIMO design which is the
delay between input channels.

The multivariable design, as described above, im-
poses the following requirements on the BMF sig-
nal period P:

P=NTy, > 27r(§)Tss, form <6

P=NTg, > m(g)Tss, for m > 6 (5)

with the delay between input channels, D, equal
to D = (2)Ty,.

The resulting T, in the MIMO case still satisfies
inequality (4).

Since the BMF signal period in the MIMO case is
given by equations (5), the minimum plant testing
time is expressed by:

tiest = (27 + 1)(§)Tssa for m <6

s =+ ()T, Torm>6 (6)
Equation (6) is derived from the fact that one
process settling time Ts, worth of data (or the
modified settling time (%)Tss with g € [3,5])
needs to be discarded in the beginning of the test
since it contains information related to previous
input moves and not to the planned test moves.

Equation (6) is a key result of the present work.
By comparing equations (6) and (1) one can infer
an average 85 — 90 % reduction in plant testing
time with the new technique when compared to
step testing.

2.4 Plant-Friendliness Analysis of the Plant Test

Once the multivariable test has been designed to
tailor a particular application, it is important to
predict, ahead of time, the effect that the designed
perturbation signals will have on the plant. This
is especially important given the multivariable
nature of the test and how the different input
moves interact to affect the outputs.

In this work a novel method for evaluating plant-
friendliness of the designed test has been devised.
Through assumption of simple linear dynamics
and what is believed to be reasonable size moves
on each input variable, it is possible to predict
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Fig. 2. Prediction of output behavior for two
different plant test designs. Dashed Line:
Plant-unfriendly design; Solid Line: Plant-
friendly design

the plant output behavior during test. Output
constraint violations can also be anticipated. This
method provides a means of checking when input
move combinations might lead the outputs to-
wards constraints and what effect the input move
sizes will have on the output responses.

If a design is judged to be plant-unfriendly, the
first step might be to re-order the perturbation
signals with respect to the input variables and re-
evaluate plant-friendliness. If this does not pro-
duce satisfactory results, the test design should
be re-visited.

Figure 2 illustrates how the application of this
technique enables screening of a more plant-
friendly test design prior to the actual test. The
two curves indicate predictions of a plant output
behavior using the plant-friendliness analysis tool.
The dashed curve corresponds to the initial design
based on the available plant information. The
solid curve was obtained by simply re-ordering the
BMF signals with respect to the input variables.
While both designs satisfy the output constraints
indicated by the horizontal dotted lines, the test
design corresponding to the solid curve is believed
to be more plant-friendly because it promotes
output excitation above and below the initial op-
erating point for a proportional amount of time. In
the design corresponding to the dashed curve, the
output tends towards the low limit constraint for
the largest duration of the test. In this particular
application, violation of the low limit constraint
means off-spec product and, therefore, output ex-
citation towards this constraint for a prolonged
amount of time is not desirable. The same input
amplitudes were considered in both cases.

2.5 Optimal Input Signal Amplitude Selection

In this work, once a plant test design is consid-
ered plant-friendly, optimal input amplitudes are



computed for maximum output excitation within
desired constraints.

In order to solve the dynamic optimization prob-
lem, the same model used for the predictions in
the plant-friendliness analysis is utilized. For sim-
plicity, the technique will be discussed for a first
order model .
G(t) = K (1-e”)), (7)
where K is the matrix of steady-state gain esti-

mates and T = TT

Since the input signals change at every T, sam-
ples and there are N moves in a signal period, the
optimization is solved N times with t = T, in
formula (7).

The vector of amplitudes A\; > 0,¢=1,...,m, for
the m inputs constitutes the set of decision vari-
ables. The optimization problem which is solved
for k=1,...,N, is given by:

m
1
OF: i In(—
A, ;5} n(Af)

I1C: AUmz’n < Akuk < Aumaw
OC: Ayk . < G(Ty)Au* < Ayk,.
AC: AF >0 (8)

where OF, IC, OC and AC stand for objective
function, input constraints, output constraints
and additional constraints, respectively. A* is an
m x m diagonal matrix whose elements are the
input amplitudes A\¥, and u* is the m x 1 combi-
nation of the m input moves at the k" delay (this
vector only contains elements equal to —1 or +1).
Umin and Upqe are the minimum and maximum
allowed input values. Aumin = Umin — Uss and
AUpmazr = Umar — Uss are, respectively, the min-
imum and maximum input deviation constraints
with respect to the desired setpoint input value,
Uss- Ymin ANd Ymae are, respectively, the minimum
and maximum output constraints which must be
satisfied at all times. Ay* . = yuin — vk and
Ayk = Ymaz — y~, are the minimum and max-
imum output deviation constraints with respect
to the current output value y* . In practice, ugs
and y!_ are the vectors of input and output values
corresponding to the start of the plant test. Since
the input deviations are always made around the
initial input value ugg, this value is not updated.
The output values, however, vary as the inputs
are implemented and the constraints have to be
measured against updated values (that is why y¥,
is dependent on k).

If this procedure were implemented on-line, dur-
ing the plant test, as an advisor for input am-
plitude selection at each Ty, samples, it should
take feedback from the plant in order to correct
the outputs (instead of the update based on the
assumed linear dynamics). This feedback would

lead to more realistic amplitudes since it is a way
to correct for the approximate dynamics in (7).

Figure 3 shows how this technique worked in a
real plant test case. The figure shows the predicted
output response in time obtained with optimized
input amplitudes and the actual output response
during plant test obtained with slightly larger
amplitudes for higher output excitation. The con-
cern with this particular critical output is that it
should not go below 99.5 % since this is a product
specification. The technique predicts that the test
sequence will drive the output close to that limit
at approximately 5250 min and again at 8300
min into the test. This indeed takes place in the
actual test but the output at 5250 min actually
goes below the desired limit due to the higher
amplitudes used during the test. The model used
for the output prediction and input amplitude
optimization was a simple first order model with
rough steady-state gain estimate.

Prediction |
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; Actual |
i

Fig. 3. Comparison of a predicted output response
obtained with optimized input amplitudes
with the actual response during plant test.

2.6 Parametric Data Analysis

Because the main focus of this work is to shorten
testing time, this also means that less data is
available for model construction. Therefore, para-
metric modeling methods are the only alternative
if reasonable quality parameter estimates are to
be obtained.

In the present work, the types of models consid-
ered were MISO or MIMO state-space or ARX
models. MIMO models were utilized for highly
interacting sub-systems of outputs where the out-
put interactions must be taken into account in
the model. These are the models that best cap-
ture the complex multivariable interactions in the
process. This is not an issue for linear processes
but, since most chemical processes are highly non-
linear, MISO and MIMO models may lead to
very different responses. In this work it has been
observed that MIMO identification for groups of



highly interacting outputs leads to better fit of
the individual output responses than MISO iden-
tification.

3. CONCLUSION

In this manuscript a method of plant testing
and system identification with emphasis on test
time reduction has been discussed. The plant
testing time reduction is achieved via selection
of binary multi-frequency (BMF) signals as input
perturbation signals designed to excite the system
in a control-relevant frequency range. The plant
testing is a multivariable test with each input
being excited with a delayed copy of the “mother”
BMF signal. On an average, the minimum testing
time with multivariable BMF testing is 85 — 90 %
shorter than conventional step testing. Once the
test has been designed, its plant friendliness can
be evaluated ahead of the plant test execution via
simulation of predictive models based on a priori
knowledge of the system. The amplitudes of the
perturbation signals used to excite the different
input channels are optimized to maximize the
output variability and the signal-to-noise ratio
within pre-specified input and output constraints.
The resulting data from plant testing is analyzed
using parametric modeling techniques.
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