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1. INTRODUCTIONThe widely accepted empirical way to characterizethe dynamics of a system is to apply perturbationsignals at the input channels and measure theresponse of the system to these signals. The inputand output signals are then processed to givethe required estimate of the dynamics of thesystem. This procedure is well known as systemidenti�cation.In much of the literature on system identi�cation,little attention has been paid to the perturbationsignal design itself, other than to the fact that thesignals should be persistently exciting. In the caseof linear systems this means e�ectively that thesignal should adequately span the bandwidth ofthe system being identi�ed. One of the main rea-sons for this lack of attention has been the empha-sis in the literature on identi�cation techniquesfor parametric models. The main focus has beenon discrete transfer function models of single-input single-output (SISO), linear, time-invariantsystems. Under these circumstances, there is not

usually a great deal to choose among di�erentperturbation signal designs. However, this is quitean idealized situation in most applications and, inpractice, many questions on signal design issues doin fact arise. These questions are generally associ-ated with how to establish a suitable compromisebetween persistent excitation and plant friendli-ness during test, how to reduce the testing timewithout compromising the information needed,e.g., for control design, process monitoring, etc.On the issue of system identi�cation for modelpredictive control (MPC), a more recent interesthas emerged in the automatic control community.However, in practice, traditional step testing isstill adopted by and large in open-loop data col-lection for MPC modeling.Step testing assumes that only one input channelis moved at a time. Each step move is held for arelatively long length of time. In (Boyden, 1999) itis recommended that each input move should beheld for an average of half the process settling timeand a series of 15� 20 moves should be executed



for each input. In terms of their frequency char-acteristics, step signals tend to emphasize steady-state behavior and do not focus, therefore, on theclosed-loop (faster) behavior. This means that amodel with poor dynamic properties may be ob-tained. The plant testing time estimate for MPC,ttest, corresponding to this step testing techniquecan be expressed by the following formula:ttest = (8 : : : 10) � IV � Tss (1)where IV is the number of independent variables,i.e., the sum of manipulated inputs and measur-able disturbances and Tss is the process settlingtime. Naturally, ttest can become prohibitivelylong for systems with long process settling timeand/or large# of independent variables. For someapplications in our experience, this number caneasily vary between 1 to 2 months dependingon the particular process characteristics. Thisexcessive plant testing time generally translatesinto practical and economical infeasibility of MPCprojects.Besides step testing, single and multivariablePRBS testing have become quite popular in themore recent literature on system identi�cationfor process control. Some relevant work includes(Cott, 1995a; Cott, 1995b; Gaikwad and Rivera,1994; Koung and MacGregor, 1994; Ljung, 1998;Rivera et al., 1990; Zhan, 1999; Zhu, 1998). In(Cott, 1995a) the author describes a benchmarkproblem proposed in the Process Identi�cationWorkshop at the 1992 Canadian Chemical En-gineering Conference. Both industrial and aca-demic participants in the workshop were chal-lenged to identify models for the benchmark prob-lem by using di�erent perturbation signal designsand system identi�cation techniques. Most of theparticipants utilized pseudo-random binary sig-nals (PRBS) with di�erent design characteristics.In (Zhu, 1998) the author proposes the use ofPRBS as part of the so-called asymptotic method(ASYM) of system identi�cation. In (Gaikwadand Rivera, 1994) and (Rivera et al., 1990) theauthors make use of PRBS as perturbation signalsfor system identi�cation. In (Koung and MacGre-gor, 1994) the authors rotate input signals in anattempt to better capture uncertainties in the pro-cess steady-state gains. The signals used as the ba-sis for this design are PRBS. Thus, PRBS, whichstarted as a periodic signal generated in the time-domain through shift register circuitry, received afrequency-domain interpretation and a multivari-able design which made it attractive for systemidenti�cation purposes. Nonetheless, PRBS dis-plays several weaknesses that have been reportedin the literature (Cott, 1995a; Cott, 1995b; God-frey, 1994).Other types of time-domain periodic signals havefound little application so far. These are referred

to as multi-level pseudo-random signals (alsoknown as m-signals) (Docter, 1999; Zierler, 1959).Regarding frequency-domain identi�cation, earlywork on signal design dates from the 1960s butmost of the relevant papers are much more recent.However, they appear in journals ranging fromNuclear Science and Engineering to the Interna-tional Journal of Control, from Industrial Engi-neering and Chemistry to International Shipbuild-ing Progress and in (at least) six di�erent IEEETransactions. As a result, this work is not as wellknown as it should be. The book edited by KeithGodfrey (Godfrey, 1994) is a relatively recent ref-erence that collects some of this material.In the present work, a thorough study of vari-ous perturbation signals for system identi�cation,namely, pseudo-random binary signals, multi-levelpseudo-random signals, sum-of-harmonics signals(van der Ouderaa et al., 1988; Rivera, 1999)and binary multi-frequency signals (Van den Bos,1967; Buckner and Kerlin, 1972; Harris and Mel-lichamp, 1980; Paehlike and Rake, 1979; Van denBos, 1970; Van den Bos and Krol, 1979), wascarried out. The �ndings of this study led to theselection of binary multi-frequency (BMF) signalsas perturbation signals for plant test. The factorsthat led to this selection will be discussed later.2. MAIN RESULTSThe main goal of this work is to considerablyshorten plant testing time without compromising,and actually improving, the obtained model qual-ity. In order to achieve this goal, the followingsteps are used as part of a comprehensive planttest procedure:� Determination of Control-Relevant Plant In-formation� Perturbation Signal Design� Multivariable Plant Test Design� Plant-Friendliness Analysis of the Plant Test� Optimal Input Signal Amplitude Selection� Parametric Data AnalysisFigure 1 is a owchart of the main elements of thesystem identi�cation technique proposed in thiswork.2.1 Control-Relevant Plant InformationExtracting plant information which is relevant forthe purpose of process control has been a topicof discussion in the literature (see, e.g., (Rivera,1999)). The approach has been suggested as ameans of enhancing controller performance. In thepresent work, this approach has been identi�ed



Fig. 1. Comprehensive Technique for System Identi�cation. The dashed lines represent a priori knowledgeof the plant used in designing the open-loop, non-iterative experiment. A priori knowledge maybe obtained from a previously identi�ed system of similar characteristics, operations personnel'sknowledge of the system, a (dynamic) simulator, etc.as one of the key components in reducing planttesting time.Let us consider a �rst-order process with one inputu(t) and one output y(t). If the input is excitedwith a unit step, the output response is givenby y(t) = K(1 � e�t=� ), where K is the processsteady-state gain and � is the time constant. Byde�nition, the process is considered settled whent � Tss � 5� , which implies that 99:33 % of theresponse has been attained. However, if t = 4� ,98:17 % of the response is still captured and ift = 3� , 95 % of the response is obtained. Thus, fora �rst-order process, one can design the signal sothat !processlow is then increased to 5�Tss , where � 2[3; 5], and still obtain reasonable low frequencyinformation on the process. Even if the processis not �rst order, most chemical processes' stepresponses near a given operating point resemblethose of a linear system and similar argumentscan be used to shorten testing time.Now the question remains as to what should bethe upper bound on the frequency range usefulfor control-relevant system identi�cation. For anygiven linear system, a perturbation signal thatspans the bandwidth of the system, i.e., ! 2[ 1Tss ; 1�dom ] rad/unit of sampling time, where �domis the estimated dominant time constant of thesystem, is adequate for the purpose of systemidenti�cation if the system is to operate in open-loop. However, if the purpose of the plant testis to identify a system suitable for operation in

closed-loop, the closed-loop bandwidth must beconsidered instead. If the closed-loop is estimatedto be � > 1 times faster than the open-loop,then the bandwidth for the system in closed-loopis given by ! 2 [ 1Tss ; ��dom ] rad/unit of samplingtime. Therefore, this is the frequency range whichthe perturbation signal should span for control-relevant system identi�cation.Typically, � assumes values between 2 and 3 butit could be much higher if the controller is tunedmore aggressively. Therefore, for closed-loop oper-ation, !processhigh = ��dom rad/unit of sampling time.This frequency window will dictate the minimumperiod of the signal used for system identi�cationand the speed with which this signal should vary.2.2 Binary Multi-Frequency Signal DesignAn excellent compromise between exibility insignal power distribution, small peak factor, shortplant test and ability to obtain high signal-to-noise ratio can be achieved by using the so-calledbinary multi-frequency signals (BMF) (Van denBos, 1967; Buckner and Kerlin, 1972; Harrisand Mellichamp, 1980; Paehlike and Rake, 1979;Van den Bos, 1970; Van den Bos and Krol, 1979).Like the PRBS, these are binary, discrete-interval,periodic signals with period P = NTsw samples.Like the sinusoids, these signals display as muchpower as possible in certain harmonics speci�ed by



the user. Nearly all designs are for N a power of 2,which makes it easy to ensure no spectral leakageusing FFT signal processing. However, this is nota necessity and the only hard restriction on N isthat it is an even number to guarantee that thesignal is zero mean.Because of the similar periodic auto- and cross-correlation properties of PRBS and BMF signalsand the larger exibility in the choice of N forthe BMF, the plant testing time with BMF canalways be made equivalent or shorter than thatwith PRBS. Thus, it has been recognized in thiswork that one does not pay any penalty in testingtime by having a zero mean signal with a user-de�ned power distribution.The Frequency Domain Identi�cation Toolbox inMATLAB has two routines used to generate andimprove a single binary multi-frequency signal.In these routines, the user is allowed to choosethe power associated with each harmonic in aspeci�ed frequency range. The computation is anoptimization where the signal with the smallestpeak factor and the largest percent of useful poweris computed to match, as closely as possible, theuser-de�ned power for each harmonic. The maindrawback of these routines is the lack of repro-ducibility of results since the resulting BMF signalwill change depending on the initial random seedgenerated by the software. These di�erent signalswill have correspondingly di�erent peak factorand power distribution. Therefore, the softwaredoes not necessarily provide the signal with thebest compromise between peak factor and powerdistribution and the inexperienced user may endup with a poor signal selection. In this work theseissues are addressed by improving on the existingsoftware.The algorithm used in these MATLAB routines isdiscussed in (Van den Bos and Krol, 1979) withimprovement via a search technique described in(Paehlike and Rake, 1979).Because the BMF can be designed to concentratepower in a selected number of harmonics in thecontrol-relevant bandwidth, it is generally possi-ble to excite the system as much with a lower am-plitude BMF as with a higher amplitude PRBS.The �rst design requirement on the BMF sig-nal will be dictated by the need to capture theprocess long-term behavior. The lowest frequencycaptured by a BMF signal of period P = NTswis given by !inputlow = 2�NTsw rad/unit of samplingtime. Therefore, the following inequality guaran-tees that the signal spans the process fundamentalfrequency:!inputlow � !processlow =) 2�NTsw � 1Tss=) P = NTsw � 2�Tss (2)

Further reduction in testing time can be achievedif the requirement on the low frequency informa-tion is relaxed as discussed in section 2.1, i.e.:P = NTsw � 2�(�5 )Tss; where� 2 [3; 5] (3)On the high-frequency side, the upper bound onthe control-relevant frequency window, !processhigh ,should never exceed the Nyquist frequency ofthe input signal which corresponds to !inputhigh =!Nyquist � �Tsw rad/unit of sampling time. Thiscondition generates the following upper bound onthe switching time, Tsw:!processhigh � !Nyquist =) ��dom � �Tsw=) Tsw � ��dom� (4)Inequalities (3) and (4) together provide the gen-eral guidelines for the design of BMF signalsfor system identi�cation. These requirements onP and Tsw are the same as for PRBS signals(Rivera, 1999). The fact that they extend to BMFsignals is a new �nding and it comes from thequalitative similarities between the periodic auto-correlation function (ACF) properties of BMF andPRBS signals.An important additional degree of freedom in theBMF signal design is the signal power distribu-tion over the harmonics that the signal spans.By properly designing the BMF signal, a signalwith relatively small (large) Tsw can still investa reasonable amount of power at lower (higher)frequencies. This allows for a very tailored designof the perturbation signal for each individual ap-plication.2.3 Multivariable Plant Test DesignThe BMF signals described in section 2.2 wereused to design a new multivariable plant test. Themultivariable nature of the plant test based onBMF signals proposed here is a key contributor toplant testing time reduction. As discussed in sec-tion 1, multivariable designs for perturbation sig-nals for system identi�cation are known for PRBSand Schr�oder-phased sinusoids. The multivariablestatistically uncorrelated designs for PRBS andSchr�oder-phased sinusoids are based on time andfrequency domain arguments, respectively.In the present work, time-domain characteristicsof the BMF signal, namely, the periodic auto-and cross-correlation functions (ACF and CCF),dictate the multivariable design in spite of thefrequency-domain origin of the signal. This is anovel approach to multivariable plant test designusing a frequency-domain based signal and gener-ating uncorrelated copies in time-domain.The multiple BMF signals are designed so asto ensure the smallest possible periodic unbiased



CCF between input pairs during one process set-tling time Tss. In order to achieve this goal, theguidelines imposed by equations (3) and (4) arestill relevant but may be replaced by more con-servative inequalities.In order to obtain m BMF signals with the small-est possible periodic CCFs, the initial (\mother")BMF signal is generated and m�1 delayed copiesof this signal are created. Therefore, a new pa-rameter appears in the MIMO design which is thedelay between input channels.The multivariable design, as described above, im-poses the following requirements on the BMF sig-nal period P :P =NTsw � 2�(�5 )Tss; for m � 6P =NTsw � m(�5 )Tss; for m > 6 (5)with the delay between input channels, D, equalto D = (�5 )Tss.The resulting Tsw in the MIMO case still satis�esinequality (4).Since the BMF signal period in the MIMO case isgiven by equations (5), the minimum plant testingtime is expressed by:ttest = (2� + 1)(�5 )Tss; for m � 6ttest = (m+ 1)(�5 )Tss; for m > 6 (6)Equation (6) is derived from the fact that oneprocess settling time Tss worth of data (or themodi�ed settling time (�5 )Tss with � 2 [3; 5])needs to be discarded in the beginning of the testsince it contains information related to previousinput moves and not to the planned test moves.Equation (6) is a key result of the present work.By comparing equations (6) and (1) one can inferan average 85 � 90 % reduction in plant testingtime with the new technique when compared tostep testing.2.4 Plant-Friendliness Analysis of the Plant TestOnce the multivariable test has been designed totailor a particular application, it is important topredict, ahead of time, the e�ect that the designedperturbation signals will have on the plant. Thisis especially important given the multivariablenature of the test and how the di�erent inputmoves interact to a�ect the outputs.In this work a novel method for evaluating plant-friendliness of the designed test has been devised.Through assumption of simple linear dynamicsand what is believed to be reasonable size moveson each input variable, it is possible to predict
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Fig. 2. Prediction of output behavior for twodi�erent plant test designs. Dashed Line:Plant-unfriendly design; Solid Line: Plant-friendly designthe plant output behavior during test. Outputconstraint violations can also be anticipated. Thismethod provides a means of checking when inputmove combinations might lead the outputs to-wards constraints and what e�ect the input movesizes will have on the output responses.If a design is judged to be plant-unfriendly, the�rst step might be to re-order the perturbationsignals with respect to the input variables and re-evaluate plant-friendliness. If this does not pro-duce satisfactory results, the test design shouldbe re-visited.Figure 2 illustrates how the application of thistechnique enables screening of a more plant-friendly test design prior to the actual test. Thetwo curves indicate predictions of a plant outputbehavior using the plant-friendliness analysis tool.The dashed curve corresponds to the initial designbased on the available plant information. Thesolid curve was obtained by simply re-ordering theBMF signals with respect to the input variables.While both designs satisfy the output constraintsindicated by the horizontal dotted lines, the testdesign corresponding to the solid curve is believedto be more plant-friendly because it promotesoutput excitation above and below the initial op-erating point for a proportional amount of time. Inthe design corresponding to the dashed curve, theoutput tends towards the low limit constraint forthe largest duration of the test. In this particularapplication, violation of the low limit constraintmeans o�-spec product and, therefore, output ex-citation towards this constraint for a prolongedamount of time is not desirable. The same inputamplitudes were considered in both cases.2.5 Optimal Input Signal Amplitude SelectionIn this work, once a plant test design is consid-ered plant-friendly, optimal input amplitudes are



computed for maximum output excitation withindesired constraints.In order to solve the dynamic optimization prob-lem, the same model used for the predictions inthe plant-friendliness analysis is utilized. For sim-plicity, the technique will be discussed for a �rstorder modelG(t) = K (1� e�( t� )); (7)where K is the matrix of steady-state gain esti-mates and � � Tss5 .Since the input signals change at every Tsw sam-ples and there are N moves in a signal period, theoptimization is solved N times with t = Tsw informula (7).The vector of amplitudes �i > 0; i = 1; : : : ;m, forthe m inputs constitutes the set of decision vari-ables. The optimization problem which is solvedfor k = 1; : : : ; N , is given by:OF: min�k1 ;:::;�km mXi=1 ln( 1�ki )IC: �umin � �kuk � �umaxOC:�ykmin � G(Tsw)�kuk � �ykmaxAC: �k > 0 (8)where OF, IC, OC and AC stand for objectivefunction, input constraints, output constraintsand additional constraints, respectively. �k is anm � m diagonal matrix whose elements are theinput amplitudes �ki , and uk is the m� 1 combi-nation of the m input moves at the kth delay (thisvector only contains elements equal to �1 or +1).umin and umax are the minimum and maximumallowed input values. �umin � umin � uss and�umax � umax � uss are, respectively, the min-imum and maximum input deviation constraintswith respect to the desired setpoint input value,uss. ymin and ymax are, respectively, the minimumand maximum output constraints which must besatis�ed at all times. �ykmin � ymin � ykss and�ykmax � ymax � ykss are the minimum and max-imum output deviation constraints with respectto the current output value ykss. In practice, ussand y1ss are the vectors of input and output valuescorresponding to the start of the plant test. Sincethe input deviations are always made around theinitial input value uss, this value is not updated.The output values, however, vary as the inputsare implemented and the constraints have to bemeasured against updated values (that is why ykssis dependent on k).If this procedure were implemented on-line, dur-ing the plant test, as an advisor for input am-plitude selection at each Tsw samples, it shouldtake feedback from the plant in order to correctthe outputs (instead of the update based on theassumed linear dynamics). This feedback would

lead to more realistic amplitudes since it is a wayto correct for the approximate dynamics in (7).Figure 3 shows how this technique worked in areal plant test case. The �gure shows the predictedoutput response in time obtained with optimizedinput amplitudes and the actual output responseduring plant test obtained with slightly largeramplitudes for higher output excitation. The con-cern with this particular critical output is that itshould not go below 99:5 % since this is a productspeci�cation. The technique predicts that the testsequence will drive the output close to that limitat approximately 5250 min and again at 8300min into the test. This indeed takes place in theactual test but the output at 5250 min actuallygoes below the desired limit due to the higheramplitudes used during the test. The model usedfor the output prediction and input amplitudeoptimization was a simple �rst order model withrough steady-state gain estimate.

Fig. 3. Comparison of a predicted output responseobtained with optimized input amplitudeswith the actual response during plant test.2.6 Parametric Data AnalysisBecause the main focus of this work is to shortentesting time, this also means that less data isavailable for model construction. Therefore, para-metric modeling methods are the only alternativeif reasonable quality parameter estimates are tobe obtained.In the present work, the types of models consid-ered were MISO or MIMO state-space or ARXmodels. MIMO models were utilized for highlyinteracting sub-systems of outputs where the out-put interactions must be taken into account inthe model. These are the models that best cap-ture the complex multivariable interactions in theprocess. This is not an issue for linear processesbut, since most chemical processes are highly non-linear, MISO and MIMO models may lead tovery di�erent responses. In this work it has beenobserved that MIMO identi�cation for groups of



highly interacting outputs leads to better �t ofthe individual output responses than MISO iden-ti�cation. 3. CONCLUSIONIn this manuscript a method of plant testingand system identi�cation with emphasis on testtime reduction has been discussed. The planttesting time reduction is achieved via selectionof binary multi-frequency (BMF) signals as inputperturbation signals designed to excite the systemin a control-relevant frequency range. The planttesting is a multivariable test with each inputbeing excited with a delayed copy of the \mother"BMF signal. On an average, the minimum testingtime with multivariable BMF testing is 85� 90 %shorter than conventional step testing. Once thetest has been designed, its plant friendliness canbe evaluated ahead of the plant test execution viasimulation of predictive models based on a prioriknowledge of the system. The amplitudes of theperturbation signals used to excite the di�erentinput channels are optimized to maximize theoutput variability and the signal-to-noise ratiowithin pre-speci�ed input and output constraints.The resulting data from plant testing is analyzedusing parametric modeling techniques.REFERENCESBoyden, S. (1999). DMCplusTM 1.1 - Multi-variable Control Software - Training CourseSlides - Reference Notes. Aspen Technology,Inc.. Houston, TX.Buckner, M. R. and T. W. Kerlin (1972). Opti-mum Binary Signals for Reactor FrequencyResponse Measurements. Nucl. Sci. Eng.49, 255{262.Cott, B. J. (1995a). Introduction to the ProcessIdenti�cation Workshop at the 1992 Cana-dian Chemical Engineering Conference. Jour-nal of Process Control 5(2), 67{69.Cott, B. J. (1995b). Summary of the Process Iden-ti�cation Workshop at the 1992 CanadianChemical Engineering Conference. Journal ofProcess Control 5(2), 109{113.Docter, W. A. (1999). Order Reduction of Non-linear Dynamic Models by Subspace Identi�-cation and Stepwise Regression. PhD thesis.Lehigh University. Bethlehem, PA.Gaikwad, S. V. and D. E. Rivera (1994). Inte-grated Identi�cation and Control for ModelPredictive Controllers. In: AIChE Meeting.San Francisco, CA. Session: Model PredictiveControl, paper 227a.Godfrey, Keith, Ed.) (1994). Perturbation Signalsfor System Identi�cation. Prentice Hall Inter-national (UK) Limited.
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