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Abstract: This paper discusses issues related to model predictive control for dual
rate systems in which the input is updated faster than the output. When fast-rate
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horizon control which uses just a single prediction equation to generate fast control
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1. INTRODUCTION

In many real systems the output can only be
measured at a relatively slow sampling rate and
certainly much slower than an achievable input
sampling rate. In such cases it would seem wise to
update the system input at a fast rate (FR) in order
to improve performance. However, it is not obvious
how a control law should be designed for such a case
as most conventional design methods and models
assume a single sampling rate. Moreover, as new
information (that is measurements) come only at
the slow rate (SR), one might wonder if there can be
any benefits to updating control decisions at a FR
as during intersample 1 periods. That is how can
one improve on decisions without new information?
This might suggest that one could just as well
design a slow rate control law but that goes against
the intuitive feel that surely one can get benefits
by faster input updates if that is possible. The aim
of this paper is to look at such issues in a given
context, to be defined, and hence give some answers
to what can be achieved.

1 Intersample is used here to mean in between output

measurements.

Many pieces of work on multi-rate systems assume
that one has access to an underlying fast rate model
(Lee et al, 1992). However such an assumption
is simplistic as only SR output measurements are
available and this places limitations on the identi-
fication. Recent work (Li et al, 2001) has shown
that in some cases a FR model can be deduced
but this is still an area of active research and the
robustness and limitations of such models are still
not well understood. Hence in this paper we take
the more pragmatic approach that only a slow rate
model is available. However such a model can never-
theless show the dependence on FR input sampling
through the mechanism of lifting (Khargonekar et
al, 1985; Kranc et al, 1957) whereby a multi-rate
SISO system can be represented by a single rate
MIMO system. This will be explained in more detail
in section 2.

Given only a SR model there is no obvious mecha-
nism for estimating outputs at intersample points.
One common method is to use an internal model
(Garcia et al, 1982) to estimate intersample outputs
and use these in lieu of the actual measurements to
allow the implementation of a FR control law. Here



it is assumed that an internal model is not available
so one might think that the best one can do is to
use a SR control law based on lifting. The weakness
of this is illustrated in (Rossiter et al, 2003).

This paper builds on (Rossiter et al, 2003) in that
it proposes a simple solution without recourse to
infinite horizons, that is it demonstrates how to use
a slow rate lifted model and yet update the control
law (optimisation) at the fast rate. We note that
similar concepts were adopted in (Pan et al, 2003).
One should also emphasise that a further aim of
this paper is to propose only those solutions which
gives significant improvements in performance for a
fixed (small) computational load; hence the control
horizon is restricted to small values.

The paper structured is: Section 2 gives background
to multi-rate systems, lifting and predictive control;
Section 3 discusses alternative algorithms and sec-
tion 4 contains numerical comparisons.

2. BACKGROUND

2.1 Lifting for dual rate systems

Consider a system where the input u is updated
every T seconds and the output y every mT = Tm

seconds. Use the index k for the slow sample rate
so that yk is the output at the kth slow sampling
period and use the index l for intersample periods
so that uk,l is the lth intersample value of the input
during the kth period. One could consider this as
a single rate system if the intersample inputs uk,l

were grouped as follows:

Uk =




uk,1

uk,2

...
uk,m


 (1)

where if uk,1 is implemented synchronous with the
measurement of yk, then uk,i is implemented (i −
1)T seconds later 2 . Then, using the z-transform
operator z to denote the time-delay operator at
the slow sample rate Tm, a SISO system could be
represented as a MISO system

y(z) = G(z)U(z) = [g1(z) g2(z) . . . gm(z)]U(z)(2)

where the output is still single dimensional but the
input U is m dimensional. A state space model
representation is:

xk+1 = Axk + BUk; yk = Cxk (3)

2 For convenience this paper will often use the equivalence

uk,m+i = uk+1,i

The key point to remember here is that there
is implied timing within the components of Uk.
As a consequence, when designing for multi-rate
systems, care has to be taken in the set up of
the control law to respect the so called causality
constraint (Chen et al, 1994; Meyer et al, 1990;
Sheng et al, 2002). That is one cannot have current
inputs dependent on future inputs. In this paper,
because we restrict ourselves to dual rate systems,
causality is not an issue.

2.2 Predictive control

For the purposes of this paper the illustrations
will be based on a generalised pedictive control
(GPC, (Clarke et al, 1987)) algorithm. Future work
will consider algorithms with guaranteed stability
(e.g.(Kouvaritakis et al, 1992; Scokaert et al, 1998))
but it should be noted that the means of performing
such an extension is not necessarily obvious or
straightforward for MR systems.

As predictive control (MPC) is by now well known,
here only the key points are presented. First there
is a need for prediction equations. For state space
models (3) these can take the form:

y→k+1
= Pxxk + HU→k

y→k+1
=




yk+1

yk+2

...
yk+ny


 U→k

=




Uk

Uk+1

...
Uk+ny−1


 (4)

where xk is the state, yk the output and Uk the
input, all at sampling instant k and Px, H are
defined as:

Px =




A

A2

...
Any


 ; H =




B 0 . . . 0
AB B . . . 0
...

...
...

...
Any−1B Any−2B . . . B


(5)

Remark 2.1. It is usual to limit the number of d.o.f.
in the optimisation of J , hence typically one will
minimise over the first nu components of U→k

(that is
uk,1, ..., uk,nu

) and assume that the remaining com-
ponents (that is uk,nu+1, ..., uk+ny−1,m are given by
uss, the expected steady-state value of u. Hence one
partitions the part of the prediction equation (4)
dependent on future inputs as follows:

HU→k
= [Hf |Hff ]︸ ︷︷ ︸

H

[
U→f

Luss

]}
U→k

; U→f
=




uk,1

...
uk,nu


(6)

where L is a vector of ones.



For convenience and to avoid unnecessary details
here, one can assume uss = 0 in the initial design
and then introduce offset free tracking in a later
stage. Hence the term HffLuss is ignored.

In GPC it is usual to minimise a 2-norm perfor-
mance index. A typical choice for the regulation
problem is is

min
U→f

J = ‖y→‖2
2 + λ‖U→f

‖2
2 (7)

where λ is an input weight. Subsituting predictions
(4) into cost (7) and minimising wrt to U→f

gives the
optimal set of predicted future inputs as

U→f
= − [HT

f Hf + λI]−1HT
f Px︸ ︷︷ ︸

K

xk

= −Kxk

(8)

In order to introduce tracking and to allow for offset
free disturbance rejection (Muske et al, 1993) the
control law is implemented as

U→f
− Lnu

uss = −K[xk − xss]

⇓
U→f

= −Kxk + fk;
(9)

where fk = Kxss + Lnu
uss, Lnu

is an nu vector
of ones and uss, xss are the expected steady-state
input and state giving no steady-state offset, that is
r = y, u = uss, x = xss are consistent (r is the set
point). The reader is refered to (Muske et al, 1993)
for details of how to estimate xss, uss and here we
note only that it depends on state estimation and
the set point but is otherwise straightforward.

In GPC it is usual to take only the first component
uk,1 of the optimal control trajectory U→f

and then
recompute the optimum at each sampling instant.
For a dual rate system one would implement the
first component of U→k

, that is Uk which the reader
will recall actually has m seperate moves spread
over for the intersample period. Should nu < m,
then, as mentioned in remark 2.1, U→f

is padded
with uss m−nu times as this is consistent with the
prediction assumption. Hence the first m control
moves, those defined in Uk, are given from

Uk =



−Kxk + fk

uss

uss

...


 (10)

3. AN ALTERNATIVE APPROACH TO GPC
FOR DUAL RATE SYSTEMS

3.1 The important property of predictions in GPC

Although very succesful in practice (DMC (Cutler
et al, 1980) is essentially the same algorithm),
GPC has one major weakness – there is no apri-
ori stability guarantee for the general case. Al-
though solutions to this exist (e.g. (Kouvaritakis
et al, 1992; Scokaert et al, 1998)), it is pertinent
to understand from an intuitive rather than math-
ematical viewpoint why problems can arise. The
answer is very simple and given next.

First let us assume no model mismatch so that
the predictions are exact. Nevertheless in GPC the
closed-loop behaviour and the open-loop predic-
tions used in the minimisation of J do not match.
That is one is minimising predicted performance
with a certain assumption (that the inputs become
fixed after nu steps) when what actually happens
is something quite different. It is this mismatch
that causes the problem, that is the optimisation
is illposed as it is based on erroneous assumptions
that do not match reality 3 . Whether this causes
stability or performance problems depends upon
how great the mismatch is. Fortunately for many
processes the resulting closed-loop behaviour is
quite close to the predictions and good performance
results.

Secondly let us look in more detail at the prediction
assumption that the input assume a fixed value
after nu steps. This assumption is taken to en-
sure computational tractability but clearly does not
match the expected closed-loop behaviour where
the input would be expected to change continu-
ously, at least over the process rise time. MPC
strategies deal with this mismatch by continuously
updating the assumption, that is the so called re-
ceding horizon (RH). At each sampling instant a
new d.o.f. (e.g. uk+nu

) is introduced and the opti-
mum input trajectory is recomputed.

So in summary, GPC does have a weakness in
the prediction assumption adopted. However in
practice, use of the receding horizon concept is
sufficient to recover reasonable closed-loop perfor-
mance. There are of course well documented excep-
tions where this mismatch can have catrastrophic
consequences. The next section will demonstrate
that multi-rate systems are one area where this
weakness cannot be overlooked.

3 The work of (Scokaert et al, 1998) provides an ideal

solution when tractable as it removes this mismatch.



3.2 Does the receding horizon work well for dual
rate systems ?

The problem with using the receding horizon to
rectify what could be considered as a limited pre-
diction class is that it can work well given a fast up-
date of the optimisation, that is where the receding
horizon concept is deployed every sampling instant.
However, for dual rate systems the control law (10)
is updated only every mth sample (of the faster
sample rate) so one has to live with the previously
computed optimum for m samples before it can be
improved. In this case if the prediction class is not
close to the desired closed-loop dynamic, the RH
update is too infrequent to correct the behaviour.
This is particularly marked when m > nu, an ob-
servation which the example section will illustrate.

Remark 3.1. This paper takes the assumption that
nu should be small, say 1 or 2 as that is common
in practical implementations. Clearly for large nu

the issues are much less significant but the implied
computational load may be considered intractable
for some cases.

3.3 Improving the GPC algorithm for lifted systems

The normal expectation for GPC implementations
is to use the receding horizon concept at the fast
sampling rate, that is at the sample rate at which
the input is updated. Here it will be shown how that
can be achieved effectively in the lifted framework
despite the lack of fast rate output measurements
and the lack of a fast rate model. It is noted that
the existence or not of new output measurements
does not affect nominal performance, as for the
certain case predictions are exact. In fact output
measurements are needed primarily to give robust
performance and disturbance rejection.

The key issue in the receding horizon is the in-
troduction of a new d.o.f. It will now be shown
that in the dual rate scenario it is straightforward
to introduce new d.o.f. at intersample periods and
hence to update the predictions at a fast rate.
Define the future input trajectory U→k

to have 3
parts, a past (that is inputs that have already
been implemented), d.o.f. (that is available to the
optimisation) and a steady state:

U→
T

k
= [UT

k|past, U
T
k|d.o.f., Uk|ss] (11)

The structure of the components of input trajectory
U→k

at the lth intersample period is given as

Uk|past = Uk,l|p =




uk,1

...
uk,l−1




Uk|d.o.f. = Uk,l|f =




uk,l

...
uk,l+nu−1




Uk|ss = Uk,l|ss =




uss

uss

...




(12)

Hence at the (k, l) sampling instant (that is the lth

intersample period of the kth sample period), the
optimisation should be set up as follows:

min
Uk,l|f

J = ‖y→‖2
2 + λ‖U→‖2

2 (13)

where again for convenience it is assumed that
uss = 0. Partition H analogously to the partition of
U→k

(which clearly depends upon l) and but ignore
(ignore Uk,l|ss (as uss = 0), so that

HU→k
= Hp|lUk,l|p + Hf |lUk,l|f (14)

Hence substituting (14) into (13) and minimising
gives the optimal control law as

Uk,l|f = −[HT
f |lHf |l + λI]−1HT

f |l
[Pxxk + Hp|lUk,l|p]

= −Klxk + MlUk,l|p
(15)

where PL = [HT
f |lHf |l+λI]−1HT

f |l, Kl = PlPx, Ml =
PlHp|l. One can introduce tracking and offset free
disturbance rejection as in (9) so that the optimal
control trajectory is given from

Uk,l|f − Lnu
uss = −Kl(xk − xss)

+Ml(Uk,l|p − Lluss)
(16)

where Li is a i-dimensional vector of ones. As one
is doing a fast RH update, only teh first element,
that is uk,l, is implemented.

Remark 3.2. Control law (16) is time varying within
the intersample periods, that is the law depends
upon l. This is an inevitable consequence of lifting
(Khargonekar et al, 1985; Kranc et al, 1957; Sheng
et al, 2002) but nevertheless it appears as a time in-
variant control law at the slow sampling rate. There
can be problems with intersample ripple (Tangirala
et al, 2001) due to this time varying nature but this
should not occur in the presence of integral action
which is deployed here.

Remark 3.3. The beauty of the approach proposed
here is that it is based on a single prediction model



(4). The only change for intersample periods is how
the matrix H is partitioned in (14).

4. NUMERICAL ILLUSTRATIONS

In this section it will be shown how the combination
of lifting (which is necessary when a FR model does
not exist) and small nu render more typical GPC al-
gorithms ineffective. By adopting the modification
suggested in this paper one can recover the nominal
performance to that achievable should the fast rate
output measurements be available.

Consider the simple example with a fast rate state
space model

xk,l+1 =
[

0.3 0.5
0.1 0.9

]
xk|l +

[
0.1
0.2

]
uk|l;

yk = [1 0]xk

(17)

Recall that this model is given for the readers
benefit but the assumption is made that only the
equivalent model of form (3) is known. Assume
that the output is sampled 4 times slower than the
input, i.e. m = 4. The GPC algorithms of (10)
and (16) are implemented for nu = 1, 2, 3, 4 with
ny = 8, λ = 1. The simulations are displayed in
figures 1-4 for nu = 1, ..., 4 respectively; circles and
dotted lines are used for the fast RH algorithm of
(16) and crosses and solid lines are used for the slow
RH update algorithm of (10). The x-axis has units
of the fast sample rate so new output measurements
are given only every 4th sample. The corresponding
closed-loop runtime costs are given in table 1.

RH Algorithm nu = 1 nu = 2 nu = 3 nu = 4
Slow (eqn.(10)) 3.18 2.65 2.33 2.14
Fast (eqn.(16)) 2.21 2.17 2.14 2.11

Table 1: Closed-loop runtime costs J

It is clear both from the table and the figures that
the proposed algorithm using a fast RH update
based on an identical prediction model has vastly
outperformed the nominal lifted algorithm when nu

is small, even though there has been no new output
measurements. The limitation of the prediction
assumption is very clear in figures 1-3 where it can
be seen that the input moves to a poor default
value, that is uss, during the later intersample
periods. If one uses a fast RH law (as iin (16))
the negative effects of this poor assumption can
be alleviated, but not if one uses a slow RH (as
in 10). Naturally as nu becomes larger (e.g. fig. 4)
then the issue becomes less significant but there is
a consequent increase in the online computational
burden.
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Fig. 1. Simulations with nu = 1
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Fig. 2. Simulations with nu = 2
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Fig. 3. Simulations with nu = 3

5. CONCLUSIONS AND FURTHER WORK

This paper builds further on (Rossiter et al, 2003)
which illustrated that in the context of dual rate
systems, purely using lifting and a slow control
law update, has severe and unnecessary limitations.
It is shown here that even though no new obser-
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Fig. 4. Simulations with nu = 4

vations are available during intersample periods,
the predictive control algorithm is at its best only
when used in a receding horizon sense. Hence this
receding horizon property should be utilised to its
maximum, even during intersample periods. Here a
means of doing this has been presented which does
not require more than one model (Panet al, 2003)
unlike other approaches (Sheng et al, 2002) which
require different models for each intersample point.
Rather it has been shown that one can simply use
different partitions of a single prediction equation
in order to find the m control laws most relevant
to the m intersample periods. The benefits of this
simple approach are evident from the examples.

Future work will look at the context of algorithms
with guaranteed stability, e.g. (Scokaert et al, 1998),
and investigate whether the same concept is equally
applicable. Allied to this is the issue of constraint
handling which was omitted here as secondary to
the key contribution. Do constraints bring any new
facets to the problem? Moreover there is a need to
look at multi-rate systems which are not just dual
rate as for these the partitioning of the intersample
period is more complex. It should be re-emphasised
here that the focus here has not been what is the
best one can do with arbitrary computing power?
but rather what can one achieve with a relatively
simple and undemanding algorithm?
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