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Abstract: Several neural-net based PID controllers have been proposed for non-
linear process systems. However, they have been not so widely used in process
industries due to the considerably computational cost. This paper presents a new
intelligent PID tuning scheme, whose PID tuner is constructed by the fusional
structure of a cerebellar model articulation controller and a neural network. This
PID tuner gives us the higher learning efficiency which has not been realized by
the conventional neural-net based controllers, and it enables us to tune PID gains
in an on-line manner. The behaviour of the proposed scheme is examined by a
simulation example for a chemical reactor model.
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1. INTRODUCTION

Neural-net based controllers have been proposed
for nonlinear systems. The reason why the neural
network(NN)(K.S.Narendra and K.Parthasarathy,
1990; C.-Y.Seong and B.Widrow, 2001) is em-
ployed for such systems is that they have the capa-
bility of highly approximating nonlinear proper-
ties. The back propagation(BP) scheme is usually
employed in updating weights included in neu-
ral networks. According to the neural-net based
controllers using the BP scheme, however, the
problem is pointed out which considerably com-
putational time is required until the good control
performance is obtained. Therefore, the neural-
net based controllers are not necessarily suitable
in the real-time control.

On the other hand, PID control(J.G.Zieglar and
N.B.Nichols, 1942; K.L.Chien and J.B.Reswick,
1972; K.J. Åström, 1988) schemes still continue to
be widely used for most industrial control systems,
particularly in the chemical process industry. This
is mainly because PID controllers have simple
control structures, and are simple to maintain
and tune. Therefore, it is still attractive to de-
sign discrete-time control systems with PID con-
trol structures. Especially, some neural-net based
PID controllers(S.Omatu et al., 1995) have been
considered for nonlinear systems in the reason
that most real process systems have nonlinear
properties. As mentioned above, however, since
these controllers require much computational cost
to training the neural networks, they have been
hardly utilized in real process systems.



By the way, a cerebellar model articulation
controller(CMAC) has been proposed by Albus
(J.S.Albus, 1975b; J.S.Albus, 1975a), which is a
kind of artificial neural networks, and especially
applied to some robot control systems and chem-
ical process systems. The weights included in the
CMAC are trained based on a learning scheme
that has the common memory reference struc-
ture. Therefore, since the learning effect effectively
spreads around the learning point, it has the
feature that learning cost is drastically reduced
in comparison with the conventional BP method.
However, it has also the following problems.

(1) Since the conventional CMAC directly gener-
ates the control input, it is difficult to explicitly
grasp the nonlinear properties of the controlled
object. It is a very important factor to know
characteristics of the controlled object in oper-
ating equipments in real process systems.

(2) Since input signals for the CMAC are quan-
tized, it is difficult to obtain accurate control
performance even if it has the rapidity in the
initial stage of training the CMAC. This prob-
lem can be solved by increasing the number of
weight tables included in the CMAC. However,
since the capacity of the computer memories
becomes considerably large, it is not useful in
the practical systems.

The objective of this paper is to propose a new
design method of neural-net based intelligent PID
controllers with high learning efficiency. The pro-
posed controller has a fusional structure of the
CMAC and the NN. The new scheme to generate
PID parameters using the CMAC, is firstly pro-
posed. As mentioned above, although it is impossi-
ble to know the properties of the controlled object
using the conventional CMAC, the operators to
deal with real systems can roughly grasp them
through PID gains. To the best of our knowledge,
such a controller that generates PID gains using
the CMAC, has been not reported until now.
Next, the fusional structure is considered, which
is constructed using the CMAC and the NN. This
structure can complement each problem in the
CMAC and the NN mutually. In other words,
the CMAC is suitable to work in the initial stage
of learning, because it demonstrates effect in the
static mapping. On the other hand, the accurate
learning performance can be finally obtained using
the NN, although the NN requires much learning
time. Therefore, the CMAC is firstly worked in
tuning PID gains, and the PID tuner which has
been roughly trained, is switched from the CMAC
to the NN. Then, the NN works so that the control
performance is further improved. This structure
gives us the higher learning efficiency which has
not been realized by the conventional neural-net
based controllers.

This paper is organized as follows. The intelli-
gent PID controller with the fusional structure of
the CMAC and the NN, is proposed. Next, the
CMAC-based PID tuner firstly is explained, fol-
lowed by the NN-based PID tuner. Furthermore,
a criterion in order to switch from the CMAC to
the NN is considered. Finally, the effectiveness of
the proposed scheme is numerically evaluated on
a simulation example based on a chemical reactor
model.

2. PID CONTROLLER DESIGN

2.1 Outline of controller

The velocity-type PID control law which has vari-
able gains, is described as

∆u(t)=KI(t)e(t)−KP (t)∆y(t)−KD (t)∆2y(t) (1)

K(t) = [KP (t), KI(t), KD(t)], (2)

where u(t) and y(t) denote the control input and
the corresponding system output, respectively.
And also, e(t) denotes the control error, which is
defined as follows:

e(t) := r(t) − y(t), (3)

where r(t) denotes the reference signal, and
KP (t), KI(t) and KD(t) are respectively the pro-
portional gain, the integral gain and the derivative
gain. Furthermore, ∆ denotes the differencing op-
erator defined as ∆ := 1 − z−1.

The control performance strongly depends on
PID gains in (1). Especially, PID gains must be
carefully determined for nonlinear systems. Sev-
eral neural-net based PID controllers have been
proposed for such systems, in which PID gains
adequately change corresponding to the operat-
ing points. However, it is pointed out that these
schemes require much computational time until
the good control performance is obtained.

On the other hand, the CMAC which is one of
artificial neural networks, can roughly approxi-
mate the nonlinear components with quite small
learning time, although the CMAC does not give
an accurate control performance such as the NN.

Therefore, this paper newly presents an intelligent
PID tuner which has the fusional structure of the
CMAC and the NN as shown in Fig.1. Here, the
S.W in this figure denotes the switching from the
CMAC to the NN, and two S.Ws work together.
That is, the CMAC firstly works in the initial
stage in order to roughly approximate the non-
linear components, and the PID tuner is switched
from the CMAC to the NN in order to further
improve the control performance. This structure
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Fig. 1. Block diagram of the proposed controller.
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Fig. 2. Conceptual diagram of a CMAC.

gives us the high learning efficiency, because a
good control performance can be obtained with
quite small learning time. The detailed tuning
scheme is discussed below.

2.2 PID parameter tuning by CMAC

The CMAC is one of artificial neural networks,
and is a controller for the body motion system.
The conceptual figure of the CMAC is shown
in Fig.2. The CMAC is defined as the following
mapping relation:

S → M → A → Kc, (4)

where S, M , A and Kc denote the input vectors,
the intermediate variables to code S, the associa-
tion cell vectors with M and the output from the
CMAC, respectively. The output from the CMAC,
Kc consists of PID gains defined by

Kc(t) := [KPc(t), KIc(t), KDc(t)]. (5)

These mapping can be explained in detail as
follows. Firstly, the CMAC composes the label
space M for the input vector S (S → M). Next,
the weights are selected from the weight table
for the label group M (M → A). Finally, the
output Kc is obtained by summing the selected
weights(Wh(t)) (A → Kc). Thus, Kc(t) is gener-
ated by the following equation:

Kc(t) =

k
∑

h=1

Wh(t), (6)

where k denotes the number of weights which are
extracted from the weight table.

In this paper, the inputs for the CMAC consist
of the reference signal r(t), e(t) and ∆e(t). Here,
∆e(t) is defined as

e(t) := r(t) − y(t). (7)

Furthermore, the only CMAC is worked until the
error criterion is satisfied. Moreover, the learning
rule to update the weights in the CMAC is as
follows:

Wh
new(t) = Wh

old(t) − g(t)
1

k

∂J(t + 1)

∂Kc(t)
(8)

J(t + 1)=
1

2
ε2(t + 1) (9)

ε(t) :=
1

2
{ym(t)−y(t)}2 , (10)

where g(t) is given by

g(t) =
1

β3 + β1 · exp(−β2 |ε(t)|)
. (11)

Here, β1 , β2 and β3 are the user-specified pa-
rameters. Moreover, each partial differentiation of
Eq.(8) is developed as follows:
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(12)

where

Θk(t) =







−∆y(t) : k = 1
e(t) : k = 2
−∆2y(t) : k = 3.

(13)



However, the system Jacobian ∂y(t + 1)/∂u(t) is
required in order to calculate Eq.(12). Here, if
this relation x = |x|sign(x) is used, the system
Jacobian is given as follows:

∂y(t + 1)

∂u(t)
=

∣

∣

∣

∣

∂y(t + 1)

∂u(t)

∣

∣

∣

∣

sign

(

∂y(t + 1)

∂u(t)

)

, (14)

where sign(x) = 1(x > 0), −1(x < 0). Now,
if |∂y(t + 1)/∂u(t)| can be included in g(t), it
is enough to know only the sign of the system
gradient in advance(S.Omatu and T.Yamamoto,
1996). Therefore, in this paper, it is assumed that
this sign of the system gradient is known.

ym(t) denotes the output of the reference model,
which is designed as follows:

ym(t) =
z−1T (1)

T (z−1)
r(t), (15)

where T (z−1) is the desired polynomial and is
defined by

T (z−1) := 1 + t1z
−1 + t2z

−2. (16)

Furthermore, T (1) denotes the static gain of
T (z−1), and T (z−1) is designed based on a lit-
erature (T.Yamamoto and S.L.Shah, 1998).

Next, the error criterion to switch from the CMAC
to the NN is determined as follows:

η(epoc) :=
1

N

N
∑

t=1

{

ε(t)

r(t)

}2

(17)

∆η(epoc) ≤ η̄, (18)

where N and η(epoc) denote the number of steps
per 1[epoc] and the scaling error, respectively.
Here, since the design of η̄ influences the control
performance greatly, η̄ is set as 0.01 as a measure
in this paper, which is determined by examining
several cases.

2.3 PID parameter tuning by NN

After the PID tuner is switched from the CMAC
to the NN, PID gains are tuned using the NN
whose detailed tuning rule is discussed below. The
multilayered NN shown in Fig.3 is used in this
paper. From Fig.3, the input layer for the NN is
given as

I(t) = [y(t − 1), · · · , y(t − n),

u(t − 1), · · · , u(t− m), uc(t − 1), r(t), Io], (19)

where Io denotes the threshold of the input layer,
and uc(t) is given by

∆uc(t) = KIce(t) − KPc∆y(t) − KDc∆
2y(t). (20)
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Fig. 3. Structure of the NN.

Furthermore, output functions of the hidden layer
and the output layer are respectively defined as
the following sigmoidal functions:

F (x) = 2

{

1

1 + exp(−ax)
−

1

2

}

(21)

G(x) = c

{

1

1 + exp(−bx)
−

1

2

}

. (22)

The output of the NN, Kn := [KPn, KIn, KDn],
is calculated using the following equations:

Tj(t) =

p
∑

i=0

Vij(t)Ii(t) (23)

Hj(t) = 2

{

1

1 + exp(−aTj(t))
−

1

2

}

(24)

Sk(t) =

q
∑

j=0

Wjk(t)Hj(t) (25)

Ok(t) = c

{

1

1 + exp(−bSk(t))
−

1

2

}

(26)

Kn(t) = [O1(t), O2(t), O3(t)], (27)

where a, b and c denote the user-specified param-
eters, and p and q denote the number of neu-
rons included in the input layer and the hidden
layer, respectively. Furthermore, Vij and Wjk re-
spectively denote the weights of the input layer
and the hidden layer. And Ho is the threshold of
the hidden layer. Here, the PID gains K can be
obtained by summing Kc and Kn.

K(t) = Kc(t) + Kn(t). (28)

Next, the weights of the NN (Vij , Wjk) are up-
dated based on the BP method as follows:

Wjk(t + 1) = Wjk(t) − α1

∂J(t + 1)

∂Wjk(t)

= Wjk(t)+α1Θk(t)ε(t)
( c

2
− Ok(t)

)( c

2
+ Ok(t)

)

·
b

c
Hj(t)

∂y(t + 1)

∂un(t)
(29)
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reactor model.
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·
a
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,(30)

where α1(> 0) and α2(> 0) are the learning
coefficients. Furthermore, if the relation η(epoc)≤
η0 is satisfied, the NN learning is stopped.

3. SIMULATION EXAMPLES

In order to evaluate the effectiveness of the newly
proposed scheme, a simulation example for a
nonlinear system is considered. As the nonlinear
system, the following polystyrene reactor model
is discussed. The schematic figure of the sys-
tem is shown in Fig.4. The relation between the
jacket temperature u(t) and the reaction temper-
ature y(t) is described as follows(E.Nakanisi and
Y.Hanakuma, 1992):

y(t) = 0.804y(t − 1) + 5.739 × 1015

· exp{−Ea/R(y(t−1)+273)}

+0.148u(t − 1) + ξ(t), (31)

where Ea = 240, R = 0.01986, and ξ(t) denotes
the white Gaussian noise with zero mean and
variance 0.12. Nonlinear properties of this system
become strong in the case of y(t) ≥ 75. The
reference signal r(t) is given as follows:

r(t) =















60(0 ≤ t < 100)
70(100 ≤ t < 200)
80(200 ≤ t < 300)
75(300 ≤ t ≤ 400).

(32)

Furthermore, the desired polynomial T (z−1) was
designed as follows:

T (z−1) = 1 − 1.558z−1 + 0.449z−2. (33)

And, the user-specified parameters included in the
CMAC and the NN were determined as shown in
Table 1.

First, for the purpose of comparison with the con-
ventional schemes, the fixed PID control scheme

Table 1. User-specified parameters on
the CMAC and the NN

(a) CMAC

Width of quantization 10

Number of weight tables !! 10

User-specified parameters !! β1=100
included in g(t) !! β2=0.01

β3=105

(b) NN

Number of units in input layer p = 9

Number of units in hidden layer q = 20

User-specified parameters !! a = 1

included in sigmoidal functions b = 1
c = 2

Learning rate (hidden layer) α1=0.0001

Learning rate (output layer) α2=0.0001

Threshold in input layer Io=1

Threshold in hidden layer Ho=1

Permissible error to finish training η0=1.0×10−4
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Fig. 5. Control result using the fixed PID
controller.

widely used in industrial processes is employed,
whose PID gains are tuned by using Chien,
Hrones & Reswick (CHR) method (K.L.Chien
and J.B.Reswick, 1972). Then, PID gains are as
follows:

KP = 6.5422, KI = 1.5522, KD = 1.8856. (34)

The control result is shown in Fig.5. From Fig.5,
owing to the nonlinearities of the controlled ob-
ject, the control result by the fixed PID controller
is oscillatory after 300[step].

Next, the control result using the proposed control
scheme is shown in Fig.6, and then trajectories of
PID gains are shown in Fig.7. From Fig.6 and
Fig.7, the good control result can be obtained
using the proposed method, because PID gains are
adjusted adequately. Furthermore, error behav-
iors corresponding to the proposed method, the
NN-PID scheme and the CMAC-PID scheme are
shown in Fig.8. From Fig.8, it is clear that the
learning speed using the NN-PID scheme is slow,
and learning speed using the CMAC-PID scheme
is very fast in the initial stage, but the learning
speed is very slow subsequently. Here, the number
of the first learning by the CMAC was 18[epoc]
and the number of the additional learning by the
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Fig. 6. Control result using the newly proposed
control scheme.
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Fig. 7. Trajectories of PID gains corresponding
to Fig.6.
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NN was 10[epoc], that is, the total number of the
learning was 28[epoc] till this relation η ≤ η0 was
satisfied. On the other hand, control results could
not be obtained so that the criterion η ≤ η0 was
satisfied in the case where the only CMAC or the
only NN was employed.

From these results, it is clear that the newly
proposed scheme works well. The adaptability for
non-trained reference signals has been examined.
The control results are omitted due to the page
limit.

4. CONCLUSIONS

In this paper, a new intelligent PID tuner has
been proposed, which has a fusional structure of
the CMAC and the NN. According to the newly
proposed scheme, the roles in learning the PID
tuner are divided into the CMAC and the NN.
That is, the CMAC firstly work in the initial stage
in order to roughly approximate the nonlinear
components, and then the NN works to further
improve the control performance. This structure
enables us to drastically reduce the computational
burden. The effectiveness of the newly proposed
scheme has been verified on a simulation example
of the chemical reactor model. PID gains have
changed adequately corresponding to the operat-
ing points (reference signals), and suitable control
results have been obtained. The application study
of the proposed scheme is our future work.
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