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Abstract: A method of determining model dimensions (number of principal components)
which maximize the sensitivity of fault detection was studied. In this paper it is shown that
the sensitivity of PCA-based fault detection generally depends on the number of principal
components. Most of the existing methods give only one value as a recommended number
of components, and so sometimes the sensitivity is poor for certain kinds of faults. Among
existing methods, although the Variance of Reconstruction Error (VRE) criterion gives a
recommended model dimension which depends on the kind of fault, it is not intended
to maximize sensitivity. This paper presents a new method of determining the model
dimension which maximizes the sensitivity of PCA-based fault detection.
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1. INTRODUCTION

Principal component analysis (PCA) is one of the
most intensively studied methods for fault detection
of plants (Krestaet al., 1991; MacGregoret al., 1994;
Kourti, 2002). The selection of model dimensions
(number of components) is an ambiguous problem in
PCA model building. There have been various com-
parative studies on methods for determining model
dimensions for fault detection. Himes et al. (Himeset
al., 1994) compared four methods using the Tennessee
Eastman simulation. Valle et al. (Valleet al., 1999)
tested 11 methods and concluded that the VRE crite-
rion is preferred. Most of the previous studies use the
concept that the best solution is the number of com-
ponents which is the “true” dimension of the system,
which is usually unknown. In this paper, we focus on
the sensitivity to fault, which is one of the most impor-
tant issues in fault detection. Both theQ-statistic (or
SPE: Squared prediction error) andT 2-statistic which
are used for fault detection, show different behaviors
under different model dimensions, and the model di-

mensions that give the maximum sensitivity of fault
detection depend on the kind of fault, as will be shown
in this paper. We propose determining the model di-
mension based on the signal to noise ratio (SNR) of
fault detection.

2. BACKGROUND

Data matrixX, which consists of data under the nor-
mal operating conditions of a plant, is represented by
a PCA model in a lower dimensiona as follows.

X � TP��E �
a

∑
h�1

thp�

h �E (1)

T, P andE are score, loading and error matrices with
appropriate dimensions respectively. The first term of
the right-hand side representsa dimensional model
subspace (or representative space), and the second
term representsm� a dimensional residual subspace



which cannot be expressed by the PCA model. (m is
the number of sensors.)

Operation data are analyzed by the constructed model.
One of the indices used for fault detection is theQ-
statistic:

Q �
m

∑
j�1

�xnewj � x̂newj�
2 (2)

� ��x�new �x�newPaP�

a��
2 � ��x�newP̃aP̃�

a��
2

xnew is a new measured vector to be diagnosed.Pa is
an m� a matrix which consists of firsta columns of
the loading matrixP, andP̃a is anm� �m�a� matrix
which consists of the remaining columns ofP. If this
statistic shows an unexpectedly large value, it means
that the data point went into the residual subspace.
This means that correlations between sensors which
were observed during normal operation conditions
were lost. The other index used for fault detection is
Hotelling’s T 2-statistic:

T 2 � tS�1t� � x�newPaS�1P�

axnew �
a

∑
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t2
h

s2
th

(3)

S is a diagonal matrix, which is the estimated covari-
ance matrix of the principal component scores, and
t is the vector which contains the scores at the time
of observation. This indicates deviation from normal
values insidea dimensional representative space. That
is, sensors show unexpected values but the linear re-
lations among them do not necessarily change in this
case.

3. DETERMINATION OF MODEL DIMENSION

3.1 Existing methods

Generally, each sensor output includes noise, and
so the determination of model dimensiona is not
straightforward. There are known criteria used in ex-
isting methods such as the scree plot, eigenvalue limit,
cumulative contribution limit, cross validation, vari-
ance of reconstruction error (VRE) criterion, and so
on.

The scree plot and eigenvalue limit are based on the
concept that components which have small eigenval-
ues are not important for modeling. In the cumula-
tive contribution limit method, the minimum model
dimension which can express, for example, 80% of
the variance of the data is selected. Cross validation
(Wold, 1978) is a method which uses a part of the
training samples for model construction; the remain-
ing samples are compared with the prediction by the
model, and when PRESS (prediction residual sum
of squares) becomes smaller, the new component is
added to the model. All of these methods are popular

and detailed descriptions can be found in the literature
(Jackson, 1991; Zwick and Velicer, 1986). The VRE
criterion was proposed for minimizing the error of
fault “reconstruction”; fault reconstruction is a proce-
dure for estimating the true state of the system without
a faulty sensor (Dunia and Qin, 1998).

3.2 Proposed method

An observed vector during operation with a fault is
written as the vector sum of the normal data and fault
vector:

x f � x� f (4)

In order to determine the SNR of fault detection by
monitoring theQ-statistic, it is reasonable to consider
the norm of a projected vector ofx f onto residual
subspace as a signal. It is also natural to regard the
statistical control limit as SNR noise. The control
limit of the Q-statistic which is shown in a reference
(Jackson and Mudholkar, 1979) can be used, or simply
a certain percentile of theQ-statistic of sample data
(normal condition data) can be used. The SNR forQ-
statistic monitoring is defined as:

SNRQ �
��x� f P̃aP̃�

a��
2

Qa
(5)

The denominatorQa is a statistical control limit of the
Q-statistic. For monitoring using theT 2-statistic, the
SNR can be defined in a similar way:

SNR
T 2 �

x� f PaS�1P�

ax f
a�n�1�

n�a Fa�n�a;α
(6)

The denominator is an approximation of a control
limit of the T2-statistic.n is the number of samples.
Fa�n�a;α is 100� �1� α � percentage point (95% for
example) of theF-distribution.

Note that the numerators of both SNR depend on the
direction of the fault vector, whereas their denomina-
tors are independent of the kind of fault. We propose
calculating the model dimension which maximizes
these SNR. The recommended dimension will be dif-
ferent forQ andT2, and it depends on the kind of fault,
too.

In order to calculate these SNR,x f is needed. In the
case of simple sensor faults, fault vectorf is easily
determined. If thei-th sensor is faulty, the value off is
determined as follows:

f � �0� � � � �0� I�0� � � � �0� (7)

� ith



This can be added to normal condition datax. In the
case of complicated process faults, a reference dataset
which includes the fault is needed to obtainx f .

This means that the proposed method is based on a pri-
ori knowledge of the fault if it is a process fault. This
is a drawback because usually one of the advantages
of PCA in fault detection is that the model can be con-
structed without information of abnormal situations.
However, if a priori information of data of abnormal
situations exists, this method is reasonably useful to
increase the sensitivity. From another viewpoint, a
speculation can be derived from this method. Namely,
as far as the model dimension which maximizes the
sensitivity of fault detection depends on the kinds of
faults generally, models with various (desirably all)
dimensions should be monitored if computational load
allows.

If there are limitations such as computational load,
more than one kind of fault may have to be detected
by a single PCA model. In this case the following
criterion is proposed. Based on many experiments
and simulations, the authors found that there exists a
model dimensionac whereSNRQ takes its maximum
and the sensitivity of theQ-statistic for fault detection
becomes significantly worse when a model dimension
larger thanac is employed. In contrast, theT 2-statistic
shows maximum sensitivity at higher order thana �
ac, and selection of fewer components makes the
model insensitive to the fault. This is thought to be
due to a principal component whose direction is close
to f, which is taken into the representative space at a
dimensionac �1 when the dimension of the model is
increased. A criterion can be considered based on this
characteristic. A model dimensionac is calculated as:

ac � argmax
a

�
∑

i
wiSNRQ

�
(8)

where i is a suffix which denotes the kind of fault
and wi is a positive weight which expresses the sig-
nificance of the fault. This expression is based on the
same concept as the formula which had been proposed
for the VRE criterion (Dunia and Qin, 1998). In the
case of the SNR criterion proposed here, a pair of PCA
models whose model dimension isac andac � 1 are
employed and the former is used forQ-statistic mon-
itoring and the latter forT 2-statistic monitoring. This
is because the principal component whose direction is
close tof is in the residual subspace ata � ac, and is
in the representative space ata � ac �1. As a result,
the sensitivities of theQ�statistic andT 2-statistic are
high ata � ac andac �1, respectively.

4. RESULT: THE TENNESSEE EASTMAN
PLANT SIMULATION

The Tennessee Eastman plant simulation is a plant-
wide process control problem developed by Downs

and Vogel. The process consists of five major units (a
reactor, a product condenser, a vapor-liquid separator,
a recycle compressor and a product stripper), as de-
scribed in the reference (Downs and Vogel, 1993). In
this study, the simulation conditions were as follows:

� Sampling interval: 3 minutes
� Data length: 500 points (for each dataset)
� Control: The cascade control system proposed by

McAvoy and Ye (McAvoy and Ye, 1994)
� Sensors used for PCA modeling: 16 sensors pro-

posed by Chen and McAvoy (Chen and McAvoy,
1998)

� Fault occurrence time: 1 hour (20 points) after
the start of simulations

� Random seed: Changed for every simulation run

4.1 Definition of sensitivity and fault detection

In this paper, the sensitivity of fault detection is de-
fined as follows. First, statistical control limits with
95% confidence limit for each PCA model are cal-
culated. Then theQ-statistic andT 2-statistic of test
data are calculated and divided by each control limit.
Therefore, the value unity means that the statistic is
equal to the control limit. In the following analysis we
defined that the fault is detected when any of the PCA
models has shown six succeeding values larger than
one. (The value “six” was determined empirically to
suppress false alarms, and has no significant meaning
itself.)

4.2 Sensor faults

Three kinds of sensor faults are studied here: offset of
reactor inlet flow sensor (XMEAS 6), drift of separator
pressure sensor (XMEAS 13) and random noise of
stripper pressure sensor (XMEAS 16), denoted by
SF 1, 2 and 3, respectively. These three sensors are
selected because they are not used in the control loop.
Note that the use of faulty sensors for feedback control
causes complicated dynamics of the system and the
faults cannot then be treated as simple sensor faults.

First, a PCA loading matrix was calculated using train-
ing data under normal conditions. The scree plot is
shown in Fig. 1. It implies that three components
should be retained. The numbers of components re-
tained by existing methods are listed in Table 1. The
eigenvalue limit method suggests that five components
should be retained and cumulativeR2 exceeds 80%
with eight components. The cross validation method
selected only two components in this case.

Subsequently, SNR were calculated usingf vectors in
the form of Eq. 7 for each fault. Model dimensions
which maximizeSNRQ andSNR

T2 are shown in Table
2, as well as the dimension of the VRE criterion
selected.
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Fig. 1. Scree plot.

Table 1. Model dimensions selected by ex-
isting methods

Scree Eigenvalue limit CumulativeR2 Cross validation
3 5 8 2

Table 2. Model dimensions selected by
VRE and SNR criteria

Fault VRE SNRQ SNR
T 2

SF1 2 4 8
SF2 11 12 14
SF3 12 13 14

Fig. 2.Q-statistic normalized by its control limits for
simulation case SF 3 (random noise of stripper
pressure sensor (XMEAS 16)).

An example of the time series plot of sensitivities (Q-
statistic andT 2-statistic normalized by their control
limit) in the case of SF 3 are shown in Figures 2 and
3, respectively. These values are from a test by data
with different random seed (independent data from the
samples for modeling and dimension selection proce-
dure). As shown in these figures, models with dimen-
sions a � 13 for Q-statistic monitoring anda � 14
for T2-statistic monitoring, which were determined by
the SNR criterion, presented the highest sensitivities.
The SNR criterion was also the best for the other two
sensor faults in terms of the sensitivity.

Fig. 3.T2-statistic normalized by its control limits for
simulation case SF 3 (random noise of stripper
pressure sensor (XMEAS 16)).

4.3 Process faults

Disturbances prepared in the original Tennessee East-
man simulation code (the disturbances are denoted by
“IDV” in their program) were used for process fault
investigations. First, a PCA model was calculated by
training data under normal conditions. The model di-
mension is tentatively determined by the eigenvalue
limit method (here it wasa � 5). Second, training data
which contain each fault were used to obtain a ref-
erence for fault directions. Ten points from five points
before the point where the fault was first detected were
used asx f . SNR were calculated using these reference
data. Note that the proposed method needs only a few
samples to know the direction of the fault vector.

Using independent test data (with different random
seeds), sensitivities were investigated. Figures 4 and
5 show time series plots of sensitivities for simula-
tion case IDV 10 (random variation of feed temper-
ature of reactant C). Sensitivity to the fault depends
on the model dimensions and in this casea � 14
was maximum forQ-statistic monitoring anda � 15
was maximum forT 2-statistic monitoring, which co-
incides with the result of dimension selection by the
SNR criterion.

Results of other investigated faults are not shown here
due to lack of space, however, most of the cases
showed that the SNR criterion is the best in terms of
the sensitivity.

In case all the faults should be detected by a single
PCA model, Eq. 8 is used for model selection. As-
suming that allwis are equal, Eq. 8 gaveac � 11.
On the other hand, the VRE criterion gave 2 as a
recommended model dimension, which is because of
the existence of fault SF 1. Figures 6 and 7 show
time series plots of normalizedQ-statistic andT 2-
statistic. The fault vector of SF 1 is included in the
representative space almost perfectly untila � 10, and
the sensitivities for higher dimension models become
poor. This makesui, which is an index to be minimized



Fig. 4.Q-statistic normalized by its control limits for
simulation case IDV 10 (random variation of feed
temperature of reactant C).

Fig. 5.T2-statistic normalized by its control limits for
simulation case IDV 10 (random variation of feed
temperature of reactant C).

for dimension selection (Dunia and Qin, 1998), quite
large for large model dimensions. This greatly affects
the result and the VRE criterion recommendsa � 2,
which is quite insensitive to other faults.

If only Q-statistic monitoring is performed, the sen-
sitivity for SF 1 is poor whena � 11, which is rec-
ommended by the method proposed in this paper, is
selected. However, ifT 2-statistic monitoring with the
a � 12 PCA model is performed simultaneously as
suggested, the sensitivity for SF 1 is also assured
(see Figures 6 and 7).T 2-statistic monitoring andQ-
statistic monitoring thus work cooperatively with each
other.

It is interesting to examine the results of previous
studies and compare the behavior of theQ-statistic and
T 2-statistic. Himes et al. (Himeset al., 1994) analyzed
their data from the Tennessee Eastman plant. They
analyzed in a different way and used all the 51 sensors
in the simulation. According to their result,Q-control
gave the fastest detection of a fault for models with
28–30 components, whereas theT 2-control gave the
fastest detection for models with 34 or more compo-
nents. For another fault, the fastest detection was given

Fig. 6.Q-statistic normalized by its control limits for
simulation case SF1 (offset of reactor inlet flow
sensor (XMEAS 6)).

Fig. 7.T2-statistic normalized by its control limits for
simulation case SF1 (offset of reactor inlet flow
sensor (XMEAS 6)).

for models with 28–30 components forQ-control and
32–42 components forT 2-control. Their results are
consistent with the characteristics identified in this
paper.

4.4 Consideration of false alarm

False alarms are another important point in fault de-
tection, but were not considered in the analysis given
above. Generally, false alarms are expected to in-
crease when many components are retained because
the model may include noise which yields large pre-
diction errors. We analyzed the frequency of occur-
rence and magnitude of false alarms using indepen-
dent normal data. The data used for this analysis
consisted of 10000 points, which corresponds to 500
hours of normal operation of the plant. The result was
as expected. The frequency of false alarms (type I
error) becomes about 40% for several models with
high dimensions although they were designed to show
5% type I error. However, care must be taken when



assessing the method presented in this paper with this
data. As far as the method is designed to maximize
the sensitivity, the important point is the magnitude of
false alarms. If the false alarms are not large, it is pos-
sible to avoid them by setting the control limit slightly
higher. Actually, in our simulation result it was enough
to set the control limit at only 2–3 times higher to
suppress type I errors below 5%. If the prediction error
shows a normal distribution, we can estimate how the
set point of the control limit should be changed. If
the observed false alarms are 40%, it can be expected
from statistical tables of standard normal distributions
that setting the control limit at 2–3 times higher makes
type I errors about 5 %. In our case, the advantage of
selecting the model dimension by the method based on
SNR was not lost because the variation of the sensi-
tivity in different model dimensions was much larger
than the magnitude of false alarms. This point needs
further investigations for generalization.

5. CONCLUSIONS

A new method for model dimension selection of the
PCA model based on the sensitivity of fault detection
was proposed. The proposed method is based on signal
to noise ratios which are defined using theQ-statistic
and T2-statistic, respectively. The method was vali-
dated by the Tennessee Eastman plant simulation and
the advantage of the new method in terms of sensitiv-
ity to faults was shown. On the other hand, the method
does not maximize fault reconstruction reliability. It
is recommended to use this method and the VRE cri-
terion depending on the purpose of analysis because
each method has respective strengths and limitations.
An important difference with other existing methods
is that existing methods except for the VRE criterion
are based on the concept of estimation of the “true”
dimension of the system. This is natural in view of the
fact that PCA is a tool to explain the hidden mecha-
nism of the system by computation of correlated data.
However, our goal of using PCA for fault detection
is slightly different and the sensitivity to faults is one
of the most important points. Although it does not
use a “true” system description, our method is effec-
tive in terms of sensitivity. The method uses a priori
knowledge of faults to determine SNR. Although this
is a drawback, this approach is useful to increase the
sensitivity of the method when a priori information of
data with faults exists.
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