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Abstract: In this paper we present a novel method for the numerical solution
of dynamic optimization problems. After obtaining a first solution at a coarse
resolution of the control profiles with a direct sequential approach, the structure of
the control profiles is analyzed for possible switching times and arcs. Subsequently,
the problem is reformulated and solved as a multi-stage problem, with each
stage corresponding to a potential arc. Order and resolution of the control
parameterization are adapted to the type of the particular arc. With a case study
we show that accurate solutions with only few degrees of freedom can be obtained.
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1. INTRODUCTION

The optimization of the operation of batch pro-
cesses or transient phases in continuous processes
for either off-line or on-line applications requires
the solution of dynamic optimization problems. It
is still a challenge to obtain a high-quality solution
for such problems efficiently, especially when the
problem formulation contains large-scale models,
e.g. those stemming from industrial applications.
However, even for problems with just small models
where the computation time is not an issue, the
solution quality which can be obtained by numer-
ical methods is not always satisfactory.

One important reason for this is that the analyt-
ical solution of a dynamic optimization problem
consists of one or more intervals, the so-called arcs
(Bryson and Ho, 1975). The control variables to be
optimized are continuous and differentiable within
each interval, but can jump from one interval to
the next at the so-called switching times. This may
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pose problems to numerical solution methods, be-
cause the quality of the solution depends on the
chosen parameterization order and resolution of
the control variables. The solution quality can
be insufficient, if the parameterization does not
properly reflect the switching structure. However,
the sequence and nature of the arcs is typically
not known beforehand.

For practical applications, these problems are usu-
ally treated by either a) accepting the sometimes
limited accuracy of the numerical solution, or by
b) trying to interpret the numerical solution and
to subsequently improve the solution. The lat-
ter approach typically involves human interaction
such as visual inspection of the numerical solu-
tions for finding the type and sequence of the arcs
and often also requires the use of physical insight.

To the authors’ knowledge there is only one at-
tempt to try to determine the sequence of arcs
in the solution structure automatically. Winderl
and Büskens (2002) mention an algorithm for this
purpose, though no details are presented. Some



solution methods like the one of Vassiliadis et al.
(1994) allow free interval lengths for control profile
discretization, but the switching structure is not
explicitly considered there.

In this paper we present the combination of a
direct single-shooting approach with an automatic
structure detection method. This procedure al-
lows to solve a dynamic optimization problem
with a control variable parameterization specifi-
cally tailored to reflect the sequence and nature
of the different arcs, leading to a high solution
quality involving only relatively few degrees of
freedom. This is accomplished by a reformulation
and subsequent solution of the problem as a multi-
stage problem, where each stage corresponds to
an arc of the solution structure as determined by
the detection algorithm. This way a robust and
efficient solution technique can be obtained.

2. PRELIMINARIES

2.1 Problem formulation

We consider an optimal control problem of the
following form:

min
u(t),tf

Φ(x (tf )) (P1)

s.t. ẋ = f(x,u, t) , t ∈ [t0, tf ] , (1)
0 = x(t0)− x0 , (2)
0 ≥ hx(x, t), t ∈ [t0, tf ] , (3)
0 ≥ hu(u, t), t ∈ [t0, tf ] , (4)
0 ≥ e (x (tf )) . (5)

In this formulation, x(t) ∈ Rnx denotes the vector
of state variables with the given initial conditions
x0. The process model (1) is formulated in form of
the vector function f . The time-dependent control
variables u(t) ∈ Rnu are the degrees of freedom for
the optimization. The final time tf can be either
fixed or an unknown decision variable, as well. The
objective function Φ is formulated as a terminal
cost criterion for simplicity. Note that the more
general formulation of an integral cost term can
be easily converted into the above formulation.
Furthermore, path constraints on the states (3)
and control variables (4) and endpoint constraints
on the state variables (5) can be employed. We
assume that each constraint is formulated in terms
of simple (lower and upper) bounds on the spe-
cific variables. More complex constraints and com-
bined state and control path constraints can be
converted into this formulation by adding addi-
tional equations to the model.

2.2 Necessary conditions of optimality

By employing Pontryagin’s Minimum Principle
(Bryson and Ho, 1975), problem (P1) can be refor-

mulated by introducing the Hamiltonian function
H(t) as

min
u(t),tf

H(t) = λT f(x, u) + µT h(x, u) (P2)

s.t. ẋ = f(x, u, t) , t ∈ [t0, tf ] , (6)
0 = x(t0)− x0 , (7)

λ̇
T

= −∂H

∂x
, (8)

0 = λT (tf )− ∂Φ
∂x

∣∣∣∣
tf

− νT

(
∂e

∂x

)∣∣∣∣
tf

, (9)

0 = µT h(x,u, t) , (10)

0 = νT e(x(tf )) . (11)

Here, λ(t) 6= 0 represents the vector of adjoint
variables, µ(t) ≥ 0 the vector of Lagrange multi-
pliers for the path constraints and ν ≥ 0 the vec-
tor of Lagrange multipliers for the terminal con-
straints. Note that the path constraints on states
and control variables are combined into the vector
function h = [hxT ,huT ]T . An optimal solution of
problem (P2) fulfills the necessary conditions of
optimality:

∂H(t)
∂u

= λT ∂f

∂u
+ µT ∂h

∂u
= 0 , (12)

0 = µT h(x,u, t) , (13)

0 = νT e(x(tf )) , (14)
µi = 0, if hi < 0; µi > 0, if hi = 0 , (15)
νi = 0, if ei < 0; νi > 0, if ei = 0 . (16)

If a free final time is allowed, an additional
transversality condition has to be also satisfied.
The complementary conditions (15), (16) can be
interpreted in a way that a specific Lagrange mul-
tiplier is positive if the corresponding constraint
is active and zero otherwise.

2.3 Solution structure

An optimal control profile u(t) consists of one or
more arcs in such a way, that the control is contin-
uous and differentiable within each arc, but may
jump at the switching points. Conclusions about
the possible solution structure can be derived from
the necessary conditions (12)-(16). Equation (12)
can be written separately for each control ui(t) as

∂H(t)
∂ui

= λT ∂f

∂ui
+ µT ∂h

∂ui
= 0 . (17)

The expression consists of two parts, a system
dependent part λT ∂f

∂ui
and a constraint dependent

part µT ∂h
∂ui

. Assuming that we look at the solution
structure in a given interval, we can distinguish
two cases depending on the value of λT ∂f

∂ui
:

(1) If λT ∂f
∂ui

6= 0, then it follows that µ(t) 6= 0 in
order to fulfill (17). This implies that at least
one of the path constraints h(x,u, t) must be
active.



(2) If λT ∂f
∂ui

= 0, then µT ∂h
∂ui

= 0 must hold. To-
gether with (15) this indicates that no path
constraint can be active in that interval. The
solution therefore lies inside the feasible re-
gion; it is not determined by the constraints.
Such an interval is termed a singular arc.

The first case can be further distinguished in ac-
tive control constraints or active state constraints.
This leads to four different possibilities for the
profile ui(t) in a specific interval, namely

(1) ui = ui,min : the control is at its upper
bound,

(2) ui = ui,max : the control is at its lower
bound,

(3) ui = ui,path : the control is determined by
an active state path constraint,

(4) ui = ui,sing : the control is singular.

This distinction is useful for an automatic detec-
tion of the control structure.

3. NUMERICAL SOLUTION

Solution strategies for dynamic optimization prob-
lems of form (P1) can be classified into indirect
methods, which use the first-order necessary con-
ditions from Pontryagin’s Minimum Principle (see
Section 2.2) for a reformulation of the problem as
a multi-point boundary value problem, and direct
methods, which solve problem (P1) directly. We
refer to Srinivasan et al. (2003) for a review of the
various variants of these methods.

In this work, we use the control vector param-
eterization approach, also referred to as single-
shooting or sequential approach, a direct method
which solves the problem by conversion into a
nonlinear programming problem (NLP) through
discretization of the control variables u(t). It is
important to note that our solution approach does
not require an explicit derivation of the necessary
conditions (12)-(16).They are just used for a theo-
retical justification of the method proposed later.

3.1 Control vector parameterization

In the control vector parameterization approach
(Kraft, 1985) only the control variables u(t) are
discretized explicitly. The discretization parame-
ters are the degrees of freedom for the optimiza-
tion. The profiles for the state variables x(t) are
obtained by forward numerical integration of the
model (1) for a given input. For the parameteri-
zation of the control profiles ui(t) often piecewise
polynomial approximations are applied. We use a
B-spline representation for this purpose where the
discretized control variables can be written as

ui(t) =
nu

i∑

j=1

ûi,j ϕ
(m)
j , (18)

with nu
i denoting the number of parameterization

functions for the control variable ui. Depending on
the choice of the order m of the B-spline function
ϕ(m) different orders can be realized. Our solution
framework uses piecewise constant (m = 1) and
piecewise linear (m = 2) parameterizations. Let
∆i denote the set of discretization time points for
each control variable ui(t).

3.2 Reformulation as NLP problem

Once the control profiles have been discretized,
problem (P1) can be reformulated as an NLP:

min
û,tf

Φ = Φ (x (û, tf )) (P3)

s.t. 0 ≥ h(x, û, ti), ∀ ti ∈ ∆ , (19)
0 ≥ e (x (tf )) . (20)

The vector û contains all discretization parame-
ters of the control variables. For evaluation of the
state path constraints in (19) we cannot directly
use the continuous formulation of (P1), since
the NLP requires a finite number of constraints.
Therefore, all state path constraints are evaluated
point-wise, for example on the unified mesh of all
control variables ∆ :=

⋃nu

i=1 ∆i. The number of
mesh points contained in ∆ is denoted with n∆.

3.3 Solution of the NLP problem

Once problem (P3) has been formulated, it can
be solved by a suitable NLP solver for a given
û. Typically, a sequential quadratic programming
(SQP) method (Nocedal and Wright, 1999) is used
for this purpose. A detailed discussion of NLP
theory is beyond the scope of this paper. We just
mention the key aspects which are required later.

An optimal solution of the NLP problem (P3) ful-
fills the Karush-Kuhn-Tucker conditions of opti-
mality (Nocedal and Wright, 1999). These are for-
mulated based on the Lagrangian function, which
is defined as

L(û, tf , µ̂, ν̂) = Φ(x(û, tf ))

− µ̂T h(û, x, t)− ν̂T e(x(tf )) . (21)

Each discrete constraint has an associated discrete
Lagrange multiplier, µ̂i or ν̂i, respectively. They
are related to the Lagrange multipliers µ(t) and ν
of the continuous problem (P2). The value of each
of the discrete multipliers provides information
about the status of the particular constraint at the
optimal solution. Analogously to the continuous
case, they fulfill complementary conditions. In the



following we will make use of the convention, that
µ̂i = 0, if the corresponding constraint is not
active, µ̂i > 0, if it is at the upper bound and
µ̂i < 0, if it is at the lower bound.

3.4 Resolution of the control discretization

Obviously, it is desirable to obtain a solution of
the discretized problem (P3) which is close to the
true solution of the optimal control problem (P1).
However, a very fine discretization mesh ∆i is not
a favorable option for practical problems mainly
because of three reasons: a) numerical accuracy,
b) robustness and c) computational efficiency. If
a control profile is represented by a very fine
discretization of the form (18), the NLP solution
algorithm has to deal with a large number of
decision variables. However, as indicated before,
typical control profiles may exhibit regions where
there are no significant differences between the
values of neighboring control vector parameters
ûi,j , for example in those parts of the control
profile where it is governed by an active control
path constraint. In these regions, a fine discretiza-
tion would not be required to reflect the true
solution. But also on singular arcs, a too fine
parameterization can lead to numerical problems.
Also, the computational effort required for the
solution of a dynamic optimization problem with
the sequential method is strongly correlated to
the number of parameterization functions and
renders a fine discretization unattractive from an
efficiency perspective. If a-priori knowledge about
the solution structure is available, it can be con-
sidered while setting up a possibly non-equidistant
discretization mesh. The method suggested in the
following does not require such an a-priori infor-
mation. Instead, an appropriate parameterization
is determined automatically.

4. AUTOMATIC STRUCTURE DETECTION

The proposed method consists of three main steps:

(1) a (probably coarse) solution of problem (P3),
(2) a detection of the arcs in the solution struc-

ture,
(3) a reformulation and solution of a multi-stage

problem.

The multi-stage problem in step 3 treats each arc
determined in step 2 as a separate stage, where
the parameterization order (constant or linear)
is chosen according to the type of the arc. For
example, a stage corresponding to an arc with
u = umax will be parameterized by piecewise
constant functions, whereas a piecewise linear
parameterization is used on a singular arc.

4.1 Structure detection algorithm

The detection of the arcs and switching times
in the control profiles obtained as a solution of
problem (P3) works with the help of the concepts
of optimal control theory which have been out-
lined in Sections 2.2 and 2.3. The solution of the
discretized problem (P3) including the Lagrange
parameters for the path constraints can be used
for this purpose. In the following, the correspond-
ing discrete Lagrange parameters for hx

i and hu
i

are denoted with µ̂x
i and µ̂u

i , respectively. For
brevity we restrict ourselves to the case of a single
control variable and a single state path constraint.
Then, a simplified algorithm looks as follows:

Algorithm 1 Structure detection
for i = 1, n∆ do

if µ̂u(i) < 0 then
utype(i)← ’min’

else if µ̂u(i) > 0 then
utype(i)← ’max’

else
if µ̂x(i) 6= 0 then

utype(i)← ’path’
else

utype(i)← ’sing’
end if

end if
end for
j ← 1, atype(1) ← utype(1)
for i = 1, n∆ − 1 do

if utype(i+1) 6= utype(i) then
j ← j + 1
atype(j) ← utype(i)

end if
end for
L ← j

As a result, we obtain the number of arcs L and
their type in the vector atype. utype denotes the
type (umax, using, etc.) of the control variable
in each discretization interval. Also, initial values
for the lengths of the intervals and therefore
the switching times can be extracted from the
single-stage solution. This information is used
for a subsequent reformulation as a multi-stage
problem.

4.2 Multi-stage problem formulation

The model f in problem (P1) is continuous and
only comprises a single set of state variables x
and controls u. Such a model describes a process
in a single mode or a single discrete state and
can therefore be called a single-stage model. The
corresponding optimization problem is a single-
stage problem. In contrast, multi-stage models are
used to describe situations, where the process



consists of a sequence of modes or discrete states,
with switching from one mode to the next at some
time instant tk (Vassiliadis et al., 1994).

In the context of this paper we explicitly only
treat problems which only have one physical stage,
i.e. single-stage problems. However, we can use
the multi-stage formalism in order to obtain an
alternative formulation and solution method for
these problems by using the results of the struc-
ture detection algorithm.

We define a set K = {1, . . . , L} comprising the
indices of all stages. A multi-stage reformulation
of the original problem then can be written as

min
uk(t),xk(tk),tk

ΦL(xk(tk)) (P4)

ẋk = fk(xk, uk, t), t ∈ [tk−1, tk] , ∀ k ∈ K, (22)
0 = x1(t0)− x0 , (23)
0 = xk+1(tk)− xk(tk) , ∀ k ∈ K (24)
0 ≥ hk(xk, uk, t), t ∈ [tk−1, tk] , ∀ k ∈ K, (25)
0 ≥ eL (xL (tL)) . (26)

The index k denotes quantities belonging to stage
k. The time indices are chosen such that e.g. the
time horizon of stage 1 runs from t0 to t1. The final
time of the last stage tL corresponds to the final
time tf of the single-stage problem. The models
fk, k ∈ K, are all identical copies of model (1).
The initial conditions of the first stage (k = 1) are
set to x0 by equation (23) and are therefore also
the same as in equation (2). In addition, the multi-
stage problem requires so-called stage transition
or mapping conditions (24), which map the state
variable values xk across the stage boundaries.
The objective function of a multi-stage problem
is often obtained by summing up individual costs
Φk(xk(tk)) formulated for each model stage k ∈
K. Here, just the objective function value at the
endpoint of the last stage ΦL(xL(tL)) has to be
minimized. The influence of the other stages is
propagating into the final stage via the initial
condition xL(tL−1).

The path constraints obviously should be fulfilled
in all stages and are therefore also copied as in
equation (25). Similarly to the objective function
the endpoint constraints should be only evaluated
at the final time point tL. Therefore, they are
formulated only for stage L (equation (26)).

In the single-stage problem, the final time tf
might be a degree of freedom. In the reformu-
lated problem each stage corresponds to an arc
of the solution structure. Since we know that the
solution of the discretized problem (P3) is not
likely to exactly match the switching times of the
true solution, we would like to introduce those
switching times as additional degrees of freedom.
The multi-stage formulation provides a well-suited
framework for this purpose, because the length

of the arcs (which can be easily converted into
the switching times) are just the parameters tk.
Therefore, these are included into the set of opti-
mization degrees of freedom in problem (P4). Note
that the times tk are even free in those cases where
tf is fixed, though in principle one of them then
can be determined from the others.

The control variables u(t) in the original problem
are now also present in each model stage as
uk(t). In order to be able to fulfill the mapping
conditions at the stage boundaries, the multi-
stage optimization problem requires additional
degrees of freedom: the initial values of the state
variables xk of all stages but the first. Those have
to be determined by the optimization algorithm
such that at the optimal point the conditions (24)
are satisfied. As indicated earlier, the order m of
the B-splines used for discretization is adapted to
the type of arc. More precisely, we use m = 1 and
one interval, if atype = ’min’ or ’max’, and m = 2
and two discretization intervals for atype = ’path’
or ’sing’.

The maybe coarse solution of the single-stage
problem allows to derive good initial values for the
optimization variables of (P4). A proper initializa-
tion of uk(t) is available through interpolation of
the single-stage solution in the particular region of
the time horizon belonging to arc (or stage) k. The
multi-stage problem is then solved in the same
way as the single-stage problem, i.e. through con-
version into an NLP problem as described above.

5. ILLUSTRATIVE EXAMPLE

The numerical concepts presented above have
been implemented into the software tool DyOS
(DyOS, 2002). The implementation allows opti-
mization of any model (1) compliant to the Cape-
Open ESO interface standard (Keeping and Pan-
telides, 2000), e.g. through the modeling and sim-
ulation package gPROMS (gPROMS, 2002). The
user just has to specify the problem in form of
(P1). Switching structure detection, reformulation
and solution of the multi-stage problem are car-
ried out automatically. The sample problem has
been solved by using SNOPT (Gill et al., 1998)
as NLP solver and a modified version of LIMEX
(Schlegel et al., 2004) as numerical integrator.

As an example we consider the optimization of a
fed-batch bioreactor with inhibition and a biomass
constraint. Details of the problem can be found
elsewhere (Srinivasan et al., 2003). The problem
has been solved for two different cases: starting
from a single-stage solution with n∆ = 8 and
n∆ = 32 equidistant discretization intervals. As
the solution plots in Figure 1 show, the optimal
profile of the substrate feed rate exhibits a com-
plex switching structure with L = 4 arcs. The arcs



of the true solution have been detected correctly.
The reformulated multi-stage solution is of higher
quality, because a) the switching times have been
captured properly (which was not the case in
the single-stage solutions) and b) the piecewise-
linear parameterization in the singular and path-
constrained regions provide good approximations
of the true solution with very few degrees of free-
dom. Note that the multi-stage solutions derived
from the two different single-stage solutions are
essentially identical.
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Fig. 1. Optimal solution profiles for u.

6. CONCLUSIONS

We have presented a direct method for the nu-
merical solution of dynamic optimization prob-
lems, which determines and explicitly considers
the structure of the optimal control profiles. The
method yields a high solution accuracy with a
small number of degrees of freedom. In contrast to
indirect methods the method can be easily applied
to large-scale problems. No a-priori knowledge
about the solution structure is required.

The multi-stage solution can be useful in on-line
applications like moving-horizon optimization, be-
cause taking the switching structure into account

can add robustness and computational efficiency
to the numerical solution method.

As presented here, the arcs in the solution struc-
ture can be only captured properly, if they are
already present in the single-stage solution. This
assumption might be violated in some cases, e.g.
if the single-stage discretization is too coarse. A
highly resolved solution of the initial problem
would most likely contain all arcs, but cannot be
solved efficiently. Current work is therefore aiming
at including grid point adaptation techniques on
both, the single and the multi-stage level in order
to capture the correct solution structure efficiently
also in complex problem. Recent extensions of the
method allow to handle problems with more than
one control variable, as well as enable an efficient
treatment of large-scale process models.
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