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1. INTRODUCTION

1.1 On-line Optimization

Model Predictive Control (MPC) (Morari and
Lee, 1999) has been widely adopted by industry to
address on-line optimization problems with input
and output constraints. MPC is based on the so
called receding horizon philosophy: a sequence of
future control actions is chosen according to a
prediction of the future evolution of the system
and applied to the system until new measurements
are available. Then, a new sequence is determined
which replaces the previous one (see Figure 1).
Each sequence is evaluated by means of an opti-
mization procedure which takes into account two
objectives: optimize the tracking performance,
and protect the system from possible constraint
violations.

While the benefits of on-line optimization are
tremendous, its application is rather restricted,
considering its profit potential, primarily due to
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Fig. 1. Model Predictive Control

its large “on-line” computational requirements
which involve a repetitive solution of an opti-
mization problem at regular time intervals (see
Figure 2). This limitation is in spite of the sig-
nificant advances in the computational power of
the modern computers and in the area of on-line
optimization over the past many years. Thus, it
is fair to state that an efficient implementation of
on-line optimization tools relies on a quick and
repetitive on-line computation of optimal control
actions.
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Fig. 2. On-line optimization

1.2 Multiparametric Programming

A parametric programming approach which avoids
this repetitive solution is presented. In an op-
timization framework, where the objective is to
minimize or maximize a performance criterion
subject to a given set of constraints and where
some of the parameters in the optimization prob-
lem are uncertain, parametric programming is a
technique for obtaining (i) the objective function
and the optimization variables as a function of
these parameters and (ii) the regions in the space
of the parameters where these functions are valid
- see Figure 3. The main advantage of using the
parametric programming techniques to address
such problems is that for problems pertaining to
plant operations, such as for process planning
(Pistikopoulos and Dua, 1998) and scheduling,
one obtains a complete map of all the optimal so-
lutions and as the operating conditions fluctuate,
one does not have to re-optimize for the new set of
conditions since the optimal solution as a function
of parameters (or the new set of conditions) is
already available.
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Fig. 3. Parametric Programming

By using the theory of parametric programming
the control variables are obtained as a function
of the state variables, and therefore on-line opti-
mization reduces to simple function evaluations,
at regular time intervals, for the given state of
the plant - to compute the corresponding control
actions. This results in a very small computational
effort in comparison to repetitively solving an
optimization problem.

The rest of the paper is structured as follows.
In the next section an overview of parametric
programming is provided. In section 3.1 a discrete
time formulation of the on-line optimization prob-
lem is considered. While section 3.2 is concerned
with continuous-time formulation, section 3.4 dis-
cusses the case when dynamics and logical deci-
sions are simultaneously present in the problem.
Concluding remarks are given in section 4.

2. PARAMETRIC PROGRAMMING AT A
GLANCE

Consider the following multiparametric program:

z(θ) = min
x

f(x, θ)

s.t. gi(x, θ) ≤ 0, ∀ i = 1, ..., p
hj(x, θ) = 0, ∀ j = 1, ..., q
x ∈ X ⊆ <n

θ ∈ Θ ⊆ <m

(1)

Note that in an optimization framework f is the
performance criterion to be minimized, g ≤ 0
and h = 0 are the constraints, x is the vector
of optimization variables and θ is the vector of
parameters. The objective is to obtain the optimal
x(θ), which when substituted into f(x, θ) provides
the optimal objective function value, z(θ), as
a function of θ. See Figure 4, where x(θ) is
plotted as a function of θ - the region where
a particular functional relationship between x(θ)
and θ holds is known as a Critical Region (CR).
Note that in the figure there are three CRs and
x(θ) was obtained as a function of θ by solving
only three optimization problems and therefore
solving optimization problems for each and every
value of θ has been avoided.

Depending upon whether f , g and h are lin-
ear, quadratic, nonlinear, convex, differentiable,
or not, and also whether x is vector of continuous
or mixed -continuous and integer- variables, the
nature of the profiles and CRs shown in figure 4
changes (Dua and Pistikopoulos, 2000; Dua et

al., 2002; Dua and Pistikopoulos, 1999; Dua et

al., 2003; Sakizlis et al., 2002b). For example,
when f and g are convex and continuously dif-
ferentiable and h is affine z(θ) is continuous and
convex. Recently algorithms for the case when
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(1) involves (i) differential and algebraic equations
(Sakizlis et al., 2002a) and (ii) uncertain parame-
ters (Sakizlis et al., 2004) have been proposed.

3. PARAMETRIC CONTROL AT A GLANCE

3.1 Discrete Time Formulation

Consider the following state-space representation
of a given process model (Pistikopoulos et al.,
2002):

{

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t),

(2)

subject to the following constraints:

ymin ≤ y(t) ≤ ymax

umin ≤ u(t) ≤ umax,
(3)

where x(t) ∈ <n, u(t) ∈ <m, and y(t) ∈ <p are
the state, input, and output vectors respectively,
subscripts min and max denote lower and upper
bounds respectively and (A,B) is stabilizable.
Model Predictive Control (MPC) problems for
regulating to the origin can then be posed as the
following optimization problems:

min
U

J(U, x(t)) = x′t+Ny|t
Pxt+Ny|t

+

Ny−1
∑

k=0

x′t+k|tQxt+k|t + u′t+kRut+k

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc

xt|t = x(t)
xt+k+1|t = Axt+k|t +But+k, k ≥ 0
yt+k|t = Cxt+k|t, k ≥ 0
ut+k = Kxt+k|t, Nu ≤ k ≤ Ny

(4)

where U , {ut, . . . , ut+Nu−1}, Q = Q′ � 0,
R = R′ � 0, P � 0, Ny ≥ Nu, and K is
some feedback gain. The problem (4) is solved
repetitively at each time t for the current mea-
surement x(t) and the vector of predicted state
variables, xt+1|t, . . . , xt+k|t at time t+ 1, . . . , t+
k respectively and corresponding control actions
ut, . . . , ut+k−1 is obtained.

In the following paragraphs, a parametric pro-
gramming approach which avoids a repetitive so-
lution of (4) is presented. First, we do some al-
gebraic manipulations to recast (4) in a form
suitable for using and developing some new para-
metric programming concepts. By making the fol-
lowing substitution in (4):

xt+k|t =Akx(t) +

k−1
∑

j=0

AjBut+k−1−j (5)

the objective J(U, x(t)) can be formulated as the
following Quadratic Programming (QP) problem:

min
U

1

2
U ′HU + x′(t)FU +

1

2
x′(t)Y x(t)

s.t. GU ≤W + Ex(t)

(6)

where U , [u′t, . . . , u
′
t+Nu−1]

′ ∈ <s, s , mNu, is
the vector of optimization variables, H = H ′ � 0,
and H, F , Y , G, W , E are obtained from Q,
R and (4)–(5). The QP problem (6) can now
be formulated as the following Multi-parametric
Quadratic Program (mp-QP):

µ(x) = min
z

1

2
z′Hz

s.t. Gz ≤W + Sx(t),

(7)

where z , U +H−1F ′x(t), z ∈ <s, represents the
vector of optimization variables, S , E+GH−1F ′

and x represents the vector of parameters. The
main advantage of writing (4) in the form given
in (7) is that z (and therefore U) can be obtained
as an affine function of x for the complete feasible
space of x. To derive these results, we first state
the following theorem.

Theorem 1. For the problem in (7) let x0 be a
vector of parameter values and (z0, λ0) a KKT
pair, where λ0 = λ(x0) is a vector of nonnegative
Lagrange multipliers, λ, and z0 = z(x0) is feasible
in (7). Also assume that (i) linear independence
constraint qualification and (ii) strict complemen-
tary slackness conditions hold. Then,

[

z(x)
λ(x)

]

= −(M0)
−1N0(x− x0) +

[

z0
λ0

]

(8)

where,

M0 =











H GT
1 · · · GT

q

−λ1G1 −V1

...
. . .

−λpGq −Vq











N0 = (Y, λ1S1, . . . , λpSp)
T



where Gi denotes the ith row of G, Si denotes the
ith row of S, Vi = Giz0−Wi−Six0,Wi denotes the
ith row of W and Y is a null matrix of dimension
(s× n).

The space of x where this solution, (8), remains
optimal is defined as the Critical Region (CR0)
and can be obtained as follows. Let CRR represent
the set of inequalities obtained (i) by substituting
z(x) into the inequalities in (7) and (ii) from the
positivity of the Lagrange multipliers, as follows:

CRR = {Gz(x) ≤W + Sx(t), λ(x) ≥ 0}, (9)

then CR0 is obtained by removing the redundant
constraints from CRR as follows:

CR0 = ∆{CRR}, (10)

where ∆ is an operator which removes the redun-
dant constraints - for a procedure to identify the
redundant constraints, see Gal (1995). Since for a
given space of state-variables, X, so far we have
characterized only a subset of X i.e. CR0 ⊆ X, in
the next step the rest of the region CRrest, is ob-
tained as follows (Dua and Pistikopoulos, 2000):

CRrest = X − CR0. (11)

The above steps, (8–11) are repeated and a set of
z(x), λ(x) and corresponding CR0s is obtained.
The solution procedure terminates when no more
regions can be obtained, i.e. when CRrest = ∅. For
the regions which have the same solution and can
be unified to give a convex region, such a unifica-
tion is performed and a compact representation is
obtained. The continuity and convexity properties
of the optimal solution are summarized in the next
theorem.

Theorem 2. For the mp-QP problem, (7), the set
of feasible parameters Xf ⊆ X is convex, the
optimal solution, z(x) : Xf 7→ <s is continuous
and piecewise affine, and the optimal objective
function µ(x) : Xf 7→ < is continuous, convex
and piecewise quadratic.

Based upon the above theoretical developments,
an algorithm for the solution of an mp-QP of
the form given in (7) to calculate U as an affine
function of x and characterize X by a set of poly-
hedral regions, CRs, has been developed which is
summarized in Table 1.

This approach provides a significant advancement
in the solution and on-line implementation of
MPC problems. Since its application results in a
complete set of control actions as a function of

state-variables (from (8)) and the corresponding
regions of validity (from (10)), which are com-
puted off-line. Therefore during on-line optimiza-
tion, no optimizer needs to be called and instead
for the current state of the plant, the region, CR0,
where the value of the state variables is valid, can
be identified by substituting the value of these
state variables into the inequalities which define
the regions. Then, the corresponding control ac-
tions can be computed by using a function eval-
uation of the corresponding affine function (see
Figure 5).
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Fig. 5. On-line optimization via parametric pro-
gramming

Table 1. Solution Steps of the mp-QP
Algorithm

Step 1 For a given space of x solve (7) by treating x as

a free variable and obtain [x0].
Step 2 In (7) fix x = x0 and solve (7) to obtain [z0, λ0].

Step 3 Obtain [z(x), λ(x)] from (8).

Step 4 Define CRR as given in (9).

Step 5 From CRR remove redundant inequalities and
define the region of optimality CR0 as given in (10).

Step 6 Define the rest of the region, CRrest, as given

in (11).
Step 7 If no more regions to explore, go to the next

step, otherwise go to Step 1.

Step 8 Collect all the solutions and unify a convex

combination of the regions having the same solution

to obtain a compact representation.

Figure 6 demonstrates how advanced controllers
can be implemented on a simple hardware.

3.2 Continuous Time Formulation

Consider the following optimal control problem
(Sakizlis, 2003):
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φ̂= min
x(t),v(t)

1

2
x(tf )TP1x(tf ) +

1

2

tf
∫

to

[x(t)TQ1x(t) +

v(t)TR1v(t)]dt

s.t.

ẋ(t) =A1x(t) +A2v(t)

0≥ ψg(xf ) = D1 · x(tf ) + b2

0≥ g(x, v) = C1 · x(t) + C2 · v(t) + b1

x(to) = xo, to ≤ t ≤ tf (12)

where x ∈ X ⊆ <n are the states and v ∈
U ⊆ <nv are the control manipulating inputs.
Consider: g : <n ×<m ×<nv 7→ <q and ψg : <n ×
<m × <nv 7→ <Qg . The pair (A1, A2) is assumed
to be stabilizable and the pair (A1, B1) detectable.
MatricesQ,P � 0, R � 0 constitute the quadratic
performance index.

By treating the initial state conditions as pa-
rameters, problem (12) is recast as a multipara-
metric dynamic optimization problem (mp-DO).
The solution this mp-DO problem is given by a
set of expressions for the optimal value of the
performance index and the optimal profiles of the
control inputs and the states as a function of the
initial conditions. This parametric controller has
the following benefits comparing to the paramet-
ric controller for discrete-time dynamic systems:
(A) The constraints are satisfied over the complete
time horizon rather than at discrete time points.
(B) The complexity of the control law derivation
is contingent solely upon (i) the number of con-
straints, (ii) the system dynamics and (iii) the
number of control variables.

3.3 2-state SISO illustrative example

Consider the open-loop unstable SISO plant:

Σ(s) =
0.003396(s+ 0.8575)

(s− 1)(s− 0.6313)
(13)

subject to the path constraint:

1.5s+ 1

s2 − 1.63135s+ 0.6313
≤ 2.4 (14)

A receding horizon optimal control problem is
formulated as in (12) where the terminal cost
P1 is evaluated from the solution of the Riccati
equation. The solution of the continuous time
formulation presented in section 3.2 results in the
state space partition shown in Figure 7 where the
mathematical functions of the region boundaries
and the comparison with the partition of the
discrete-time parametric controller (parco) is also
displayed.

The control policy in critical region CR01 is given
by the function:

v̂(t) = = − [1.24 e−10.76 t+10.76 to (1.0912 xo1 + 0.93 xo2 )

−0.21 e−0.8570 t+0.857 to (0.1329 xo1 + 1.4309 xo2 )];

The execution of the derived control law is also
shown in Figure 7, where the system is steered
to the origin starting from a perturbed point of
x = [7 − 13]T . It is clear from Figure 7 that
the discrete-time parco described in section 3.1
results in a larger number of critical polyhedral
regions comparing to the continuous-time parco
described in section 3.2 that generates only three
regions with non-linear boundaries.

3.4 Hybrid Systems

The mathematical representation of a process sys-
tem that operates in a transient mode and is sub-
ject to constraints and logical rules is considered
as follows (Sakizlis et al., 2002a):

ẋ(t) = A1x(t) +A2v(t) +A3δ(t)

y(t) = B1x(t) +B2v(t) +B3δ(t) (15)

Coy(t) + C1x(t) + C2v(t) + C3δ(t) ≤ 0

where x ∈ <n, y ∈ <m are the states and the
measurements of the dynamic system; v ∈ <q

are the control manipulated inputs; δ ∈ ∆ ≡
{0, 1}b are binary variables that represent discrete
decisions and logical conditions about the system
operation.

The hybrid control problem is then formulated as
follows:
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φ̂ = min
x,v,δ

1

2
x(tf )TP1x(tf ) + ||P2x(tf )|| + ||Sδ(t)||

+

tf
∫

to

[
1

2
x(t)TQ1x(t) + ||Q2x(t)||

+
1

2
v(t)TR1v(t) + ||R2v(t)||]dt

s.t. ẋ(t) = A1x(t) +A2v(t) +A3δ(t)

y(t) = B1x(t) +B2v(t) +B3δ(t) (16)

I. C.: x(to) = xo(t
∗)

Coy(t) + C1x(t) + C2v(t) + C3δ(t) ≤ 0

to ≤ t ≤ tf

where terms
∫

(1/2)·x(t)T Q1x(t)dt, (1/2)·x(tf )T P1x(tf )

and
∫

(1/2)v(t)T R1v(t)dt correspond to the 2− norm
of the state and output deviations respectively;
terms P2x(tf ),

∫

Q2x(t),
∫

R2v(t)dt represent either
infinity ||Qx(t)||∞, ||Rv(t)||∞or 1− ||Qx(t)||1, ||Rv(t)||1

norms.

After carrying out the appropriate substitutions
and manipulations the optimization problem (16)
is transformed to an equivalent finite dimensional
problem of the following form:

φ̂ = min
1

2
{L1 + L2u+ L3xo + L4ζ + uTL5u

+xT
o L6u+ xT

o L7xo + xT
o L8ζ + uTL9ζ + ζTL10ζ}

G1u+G2ζ ≤ G3 +G4xo (17)

u ∈ <q·Nq·M xo ∈ Xo ⊂ <n

where δl = ζli∀t ∈ [ti−1, ti], i = 0, 1, ...Nt, l =
1, ...b, ζ ∈ {0, 1}b·Nt . After removing nonlineari-
ties from (17) by using appropriate algbraic ma-
nipulations, the problem becomes the following
multi-parametric Mixed-Integer Quadratic Pro-
gram (mp-MIQP):

φ̂ = min
1

2
{L̄1 + L̄2z + L̄3xo + L̄4ζ + zT L̄5z +

+xT
o L̄6xo}

Ḡ1z + Ḡ2ζ ≤ Ḡ3 + Ḡ4xo (18)

z ∈ <q·Nq·M ζ ∈ {0, 1}b·Nt xo ∈ Xo ⊂ <n

where z = u + L−1
5 · LT

6 · xo. The procedure
for solving (18) parametrically is based upon de-
composing the mp-MIQP into a multi-parametric
quadratic program (mp-QP) where the integers
are fixed and an upper parametric bound is ob-
tained, and a mixed-integer nonlinear program
which treats the parameters xo as free optimiza-
tion variables and provides a new integer realiza-
tion.

The final parametric solution provides the relation
between the control and the current state of the
system that ensures the optimum system regula-
tion. This control law is proved to be (Theorem 1)
piecewise affine with respect to the states and has
the form:

uc(xo) = ac · xo + bc; ζc(xo) = dc

CR1
c · xo(t

∗) + CR2
c ≤ 0 (19)

for c = 1, ...Nc

where Nc is the number of regions in the state
space. Matrices ac, CR

1
c and vectors bc, CR

2
c , dc

are determined from the solution of the paramet-
ric programming problem and the index c desig-
nates that each region admits a different control
law and different binary realizations.

4. CONCLUDING REMARKS

An overview of the parametric programming ap-
proach for the solution of on-line optimization
problems has been presented. The on-line opti-
mization problems for discrete and continuous



time formulations and for hybrid systems were
presented. Optimal value of the control variables
is computed off-line as a function of the state
variables or measurements. This is given by a set
of control profiles on the space of state variables
and the corresponding regions on the space of
the state variables. On-line optimization is then
carried out by taking measurements from the
plant, identifying the region that is valid on the
space of state variables and then calculating the
control actions by simple function evaluations of
the control profiles. The computational hardware
requirements for such an implementation are very
simple.
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