
ON-LINE INDUSTRIAL IMPLEMENTATION OF PROCESS MONITORING / CONTROL
APPLICATIONS USING MULTIVARIATE STATISTICAL TECHNOLOGIES: CHALLENGES AND 

OPPORTUNITIES 

Michael Dudzic*, Yale Zhang 

Process Automation, Dofasco Inc.  
Box 2460, Hamilton, Ontario, Canada, L8N 3J5

Abstract: The global steel industry is striving to improve product quality through 
excellence in operation. To support this, significant investments have been made in 
upgrading instrumentation, data acquisition and computing infrastructures. The 
expectation is that with more process and product data readily available, useful 
information and better process knowledge can be gained in a timely fashion. The 
problem that has developed is that with the large volumes of data available, the 
associated data analysis and modeling have become increasingly complex. As a result, 
much of the data is either not used or summarized / heavily compressed. This means that
a significant amount of the information and knowledge resident in the data is lost, 
diminishing the returns from the investment made in the information technology 
infrastructure. A class of technologies that Dofasco has used to meet this data challenge 
is multivariate statistics (MVS), with a primary focus on Principal Components Analysis 
(PCA) and Projection to Latent Structures (PLS). These methods have been successfully 
applied to analyze data for a variety of purposes, which includes the development of on-
line predictive models and process monitoring systems. Since 1993, Dofasco has been 
involved with over 70 off-line / on-line applications of this technology at our steel 
facility in Hamilton, Ontario, Canada. Through these applications, significant financial 
returns to the company have been generated. Copyright © 2004 IFAC 
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  1. INTRODUCTION*

As the ability to collect industrial data increases and 
improves, the key challenge is to exploit the useful 
information so as to maximize process understanding 
and knowledge. The concern then becomes the 
appropriate selection of data analysis techniques that 
can be used with large data sets in order to provide 
production engineers and operators with useful and 
easy-to-understand results.  

From an automation engineer’s perspective, improved 
data analysis and statistical modeling can be used to: 
(1) maximize information and knowledge generation 
to aid in both business and process related decisions, 
(2) develop predictive models for both inference and 
control, (3) facilitate useful statistical process control 
(SPC) schemes, (4) provide the ability to supplement 
first principle modeling activities, and (5) provide 
reliable results under difficult industrial conditions. 

* Author to whom correspondence should be addressed. Tel.: 
+1(905)548-7200 ext. 6986. E-mail: mike_dudzic@dofasco.ca.

The obstacles are that typical industrial data include a 
large number of highly correlated, noisy and possibly 
missing measurements. For such data sets, the use of
traditional data analysis and modeling technologies 
can be both time consuming and produce results that 
do not capture the essential and useful information 
resident in the data. For any on-line application, 
robustness and long-term sustainability are key 
requirements for success. 

In this paper, we will present some our industrial 
experiences in the use of multivariate statistics and 
the benefits from it. A brief introduction to the MVS 
technologies will be presented from an industrial 
perspective. This will be followed by a description of 
two on-line applications that continue to provide 
significant value to the company. The first example is 
an on-line process monitoring system that is used to 
observe the complete operation of the casting process 
in the mould area of Dofasco’s #2 Continuous Slab 
Caster. The second example is a predictive model
used at Dofasco’s Desulphurization facility for 
determining the optimal amount of reagent needed to 
accurately remove sulphur from pig iron. The paper 



concludes with the following two sections; our 
thoughts for future applied research in this area that 
would be of value to industry in general and some 
reflections on the industrial application of MVS. 

2. OVERVIEW OF MULTIVARIATE 
STATISTICAL TECHNOLOGIES 

The practical value of PCA and PLS modeling 
methods is that these techniques allow for the 
systematic examination and interpretation of large 
amounts of highly correlated data. Examination of 
MVS model outputs can provide insight into the 
operation of an industrial process during monitoring 
and quality assurance activities. With PCA and PLS, 
the systematic interpretation of dominant patterns in 
the data, and the isolation of the most important 
contributors to these patterns are also possible. This 
allows the classification of data relationships 
according to normal and abnormal operation. Some of 
the numerous advantages of PCA and PLS latent 
variable modeling methods have over traditional 
monitoring and prediction technologies are: (1) 
provision for data dimension reduction, (2) robustness 
to highly correlated, noisy and missing data, (3) the 
meaningful graphical display of model outputs, and 
(4) applicability to both continuous and batch 
processes. 

The following section describes some concepts of 
multivariate statistical modeling from an industrial 
viewpoint. Further excellent theoretical reviews of 
applying MVS in industrial applications can be found 
in  Kourti (2002), and  Kourti and MacGregor (1996).  

2.1. An Industrial Perspective on Multivariate 
Statistical Modeling 

In both SPC and empirical modeling applications, the 
sample covariance matrix, Sxx=(n-1)-1XTX, and its 
inverse, often form the basis of the statistics being 
calculated, where X is an n  p matrix of n 
observations of p variables.  When developing linear 
predictive models, and in the calculation of the 
Hotelling T2 statistic in monitoring applications, the 
inversion of an ill-conditioned Sxx matrix can be 
problematic. It is precisely when the Sxx matrix is ill-
conditioned that multivariate statistics become 
particularly useful. Our focus on the use of MVS as 
the basis for SPC and modeling applications in 
industrial settings, is because in such applications, it 
is very common to have large data sets that include 
many variables that are highly correlated, and hence 
result in Sxx matrices that are ill-conditioned.   

The Hotelling T2 statistic is defined in Eq. (1) as the 
multidimensional extension of the t2 statistic.  

T2=(x- x)
TSxx

-1(x- x)   (1) 

where x is a p  1 vector of variables whose 
covariance structure is described by Sxx, and x is a p 

 1 vector of the associated sample means of the 

variables in x.  The Hotelling T2 statistic is often used 
as the basis for a control chart in applications where 
there are many variables to be monitored, although 
there are other options such as the multivariate 
exponentially weighted moving average (MEWMA)
or the multivariate cumulative sum (MCUSUM) 
statistics.  However, due to the correlated nature of 
many process data, the matrix inversion in Eq. (1) can 
often produce poor numerical results due to ill-
conditioning. To remedy this, the Sxx matrix may be 
decomposed using linear projection based methods 
such as principal component analysis (PCA). PCA 
projects the original process data (x) into a lower 
dimensional space spanned by the first A 
eigenvectors of Sxx. Once projected into this space,
the resulting transformed vectors (t) are orthogonal
and have better numerical properties that allow for 
fault monitoring using the T2 statistic given in Eq. (1) 
with X and x replaced by T and t respectively, where 
T is an n  A matrix of projected data (‘scores’), and 
t is an A  1 vector of scores for a single observation.  
The control chart is used by evaluating the value of T2

at prescribed intervals and comparing this value to a 
control limit.  Control charts can also be constructed 
to monitor the vector of t values individually. 

The PCA projection of data is accompanied by some 
loss of information since the dimension of the space 
spanned by the first A eigenvectors of Sxx is smaller 
than the dimension of Sxx (i.e. A p). To measure
this, a companion statistic called the ‘squared 
prediction error’ (SPE) is also monitored for fault 
detection when projections are used. This statistic 
measures the squared orthogonal distance from the 
un-projected data point (x) to the space spanned by 
the eigenvectors of Sxx and is also compared to a 
threshold limit in fault detection. This distance 
captures the information in the space spanned by the 
last p-A eigenvectors of Sxx.

The definition of these statistics, their distributional 
properties, and their interpretation can be found in 
several references including Morrison (1990), Mason 
and Young (2002), Jackson (1991). Kourti and 
MacGregor (1996) have advocated a means of 
rewriting the T2 and SPE statistics in terms of the 
elements that are used in the summation equations 
that define these terms. These elements, when 
separated and scaled in a particular way, can be 
related to the un-projected X-data and are said to be 
‘contributors’ to the T2 and SPE statistics. These 
contributors can be used to investigate faults in a 
Pareto fashion by focusing effort on the large 
contributors.  

In many industrial applications, it is necessary to use 
the information in measured process variables to 
predict values of output variables that are often 
related to product quality and performance, or to 
define values for input variables such as controller 
setpoints. Approaches to modeling for prediction 
include the development of first principles modeling, 
and empirical modeling. While first-principals models 



offer more promise in developing theoretical
understanding of process behaviour, they are often
difficult to formulate and costly to develop. In some
applications, these models can be too computationally
intense to solve for direct on-line use. In comparison,
many empirical models, including those based on
MVS, offer less theoretical insight but can be
developed and solved more rapidly than first-
principles models. Furthermore, in contrast to first-
principles models, empirical models can include 
variables that theoretical models do not account for, 
are generally only valid in the region spanned by the
data used to build the model, and should not be
expected to produce reliable results when 
extrapolating. Nevertheless, empirical models are
often useful in industrial settings where speed of
implementation and robustness to practical issues
such as missing data are important.

One useful class of empirical models are based on
linear predictions.  These predictive models have the
following form:

yp = x (2)

where the output variable yp is a k  1 vector of
predicted quantities that result from the combination
of the input vector x. Predictions can be made when
the elements of the k  p matrix  have been
computed. There are various approaches to 
determining values for , many of which rely on the
inversion of the XTX (i.e. (n-1) Sxx) matrix. If the
variables forming the columns of the data matrix X
are nearly collinear, as is often the case, the inversion
of XTX can become numerically unstable and can
produce poor predictions that are of little practical
use. This phenomenon is well known and remedies
such as PLS are available.

PLS is a projection-based method that explicitly 
employs the covariance structures between the
elements of x to those of y, and those of x to x, and y
to y, in model development. The differences between
this and the objectives in modeling with other
methods were analyzed by Burnham et. al. (1999),
and the numerical methods associated with PLS are
summarized in Nelson et al. (1996).  In general, PLS
and other projection-based methods can produce
estimates that are more stable because the correlation
among the variables being modeled has been taken
into account.

From a robustness point-of-view, the eigenvalue-
eigenvector model structure used in PCA can be used
to treat missing data in many ways during both the
model estimation phase and during on-line use of the
model. One approach to missing data relies on the
model estimation algorithm. During the PCA model
estimation phase, the application of the Non-linear
Iterative Partial Least Squares (NIPALS) algorithm
extracts eigenvectors from the X data sequentially via
the application of an iterative series of linear
regressions. When data in any of the columns of the

X matrix are missing, the regressions are preformed
using the data that are present and the missing points
are ignored. As long as the number of variables in any 
row or column is greater than the number of principle 
components being estimated, the NIPALS algorithm
can find a solution. A detailed description of various
missing data handling methods for both PCA and PLS
is given by Nelson et. al. (1996).

3. ON-LINE MONITORING APPLICATION – #2
CONTINUOUS CASTER STABLE OPERATION

MONITORING SYSTEM

In this section is a description of selected features of
the integrated on-line monitoring system at Dofasco’s
#2 Continuous Caster. This will highlight the use of
PCA in a multivariable SPC monitoring application.

3.1. Continuous Steel Caster Process Description

In the manufacture of steel, the conversion of liquid
steel into solid steel slabs is commonly achieved
through a process known as continuous casting,
which is illustrated in Figure 1.

Ladle

Tundish

SEN

Mold

Slab

Strand

Fig. 1. Schematic of a continuous caster.

In this process, the liquid steel is shipped by a ladle to 
the continuous caster, and then continuously poured
into an accumulator vessel called a tundish. The
tundish acts as a buffer, allowing casting to continue
while a new ladle is delivered to the caster. The liquid
steel is then fed into an open-ended copper mould
through a submerged entry nozzle, SEN. Cooling
water is circulated within the mould walls so that
liquid steel in contact with the copper mould
solidifies, forming a steel strand with a solid shell and 
liquid center. The strand is continuously withdrawn
from the mould into additional cooling chambers
where the internal liquid steel solidifies under
controlled cooling conditions.  Once the strand has
fully solidified, it is cut into slabs according to
customer requirements.

In a continuous caster, the typical operating sequence
consists of a brief start-up transition (called a start-
cast), followed by a prolonged continuous, run-time
operation, and then a shutdown operation. Within the
run-time operation, there are occasional process



transitions that occur to accommodate equipment or 
product specification changes.

3.2. Motivation for Improved Monitoring

The focus for improvement was to detect the onset
and to prevent the occurrence of caster strand
breakouts, with a secondary focus on providing early
detection of other abnormal operating situations. A
breakout is a catastrophic failure in the steel casting 
process. It occurs when the solidifying shell of the
cast steel strand does not form uniformly on leaving
the bottomless mould and ruptures, allowing molten
steel to escape. This spillage of molten steel can be
potentially hazardous and can cause equipment
damage and costly process delays. The onset of a 
caster strand breakout is known to be related to 
changes in mould thermocouple signals, cooling
water flows, mould level and other process variables
that are all interrelated.

Experience shows that breakouts occur during start-
cast, run-time or under process transition operation.
Breakouts can be avoided by reducing the casting
speed thereby giving more residence time in the
mould for the steel to solidify.  To avoid the
occurrence of a breakout, it is critical to detect 
improper solidification of the steel shell in advance
with enough lead-time to appropriately slow down the
casting.

Monitoring continuous casting processes and
predicting the onset of breakouts in advance has been
attracting considerable industrial interest for several
decades. To date, commercially available monitoring
systems only address those types of breakouts in run-
time cast operations that have definite signatures in
the process data. Our challenge was to develop an
improved monitoring scheme that included provisions
for: (1) the ability to detect many different classes of 
breakouts, (2) advanced warning, as early as possible,
to the high probability onset of a breakout under all
applicable operating conditions, and (3) easy-to-
access diagnostics for real-time troubleshooting of
processing problems that could potentially result in a 
breakout.

3.3. PCA-based Multivariate SPC Monitoring
Solution

In the following subsections, are descriptions of
selected features of the PCA-based monitoring system
under run-time, start-cast and process transition
operating conditions.

3.3.1. Run-time Operations Monitoring

PCA has been applied to monitor the continuous run-
time cast operations, where a principal component
model was developed based on selected historical
data from over half a year of normal run-time
operations. The model building task involved the
selection of significant input measurements, the

incorporation of variable lagging to capture process
dynamics, and the appropriate pre-treatment of the 
data to ensure a representative data set. The resulting
PCA model is a projection of 323 inputs into a 10
dimensional score space. Two control charts, the
Hotelling T2 (HT) statistic and the squared prediction
error (SPE), then monitor the real-time output of this
model.

For this application, 6 PCA models were required to
cover all the different operating scenarios at the
caster. Model selection is automatic so that the
operator only views the correct model output. During
run-time operation, the system uses the appropriate 
model to compare current inputs to their historical
benchmark in real-time at a sub-second frequency.
The resulting HT and SPE control charts provide a 
continuous measurement of the overall stability of the
casting process. In addition, variable contributions are
calculated and ranked in order of magnitude to
provide direction to operators in troubleshooting their
process.

HMI (Human Machine Interface) screens have been 
custom designed to supply sufficient information for
operators to monitor caster operations in real-time
and perform further diagnosis if abnormal situations
are detected. As shown in Figure 2, the information
contained in the main screen of the integrated caster 
monitoring system includes: (1) general casting
information such as heat number, steel grade, casting 
speed, etc..., (2) SPE and HT control charts indicate 
the stability of the casting operation, and (3) a 
graphical representation of the mould and its
surrounding thermocouples. The SPE and HT are
scaled to [0,1] with respect to the control limits,
respectively. There is a warning limit set at 0.8 and an
audible alarm is generated if the scaled SPE or HT
statistics exceed the value of one. Other screens
include contribution plots (see Figure 3), customized
trending, etc…, which operators can access via
navigation buttons.

Fig. 2. Main screen of integrated monitoring system 
for #2 Continuous Caster



Fig. 3. Contribution plot screen of integrated
monitoring system for #2 Continuous Caster

Further details on run-time MVS caster monitoring
can be found in Vaculik, et. al. (2001).

3.3.2. Start-cast Operations Monitoring

The start-cast is essentially a dynamic process in 
which most process variables (such as thermocouple
temperatures, heat transfer flux through each side of
the mould, etc…) show non-linear trajectories versus
time and they are highly auto-correlated. In 
continuous processes, it is expected that the 
relationship among the variables remains stationary
through time. In order to capture the non-stationary,
non-linearity and the dynamic nature of the start-cast 
process, it is necessary to include data through time
for all variables.

In approaching this problem, a start-cast is considered
a batch process over a pre-defined, finite duration.
For our case, the start cast duration begins with the
time the casting speed starts to increase, and ends
when the strand length exceeds a specific value (as
determined by process knowledge). The multivariate
statistics technology applicable for this application is
multi-way PCA (MPCA). MPCA is an extension of
the PCA algorithm, as was demonstrated by Nomikos
and MacGregor (1994 and 1995) for batch process
monitoring. The MPCA algorithm organizes the data
such that each sample of process measurements at
different sampling intervals is considered a new
variable in the MPCA model. This allows the
characterization of the changing relationships among
the variables.

Some key issues in applying MPCA to monitoring
start-casts are briefly described here. Further details
on start-cast MVS caster monitoring can be found in
Zhang, et. al. (2003). For theoretical details on the
use of MVS in dynamic data modeling for batch
processes, see Kourti (2003). 

To construct the start-cast data, large quantities of
historical data for normal start-cast operations are
required. The data can be shaped into a 3-dimensional
data block in which the 3 dimensions are: a number of
normal start-cast operations (must cover the full

region of operation); the set of process variables; and
the samples through time (observations) over the
start-cast duration. In the model development, 147
start-cast operations, with 60 process variables, over
800 observations, were used.

In the actual operation, the start-cast duration is
variable. This does not comply with one of
underlying requirements in the MPCA algorithm that,
all trajectories must be synchronized with the 
evolution of the batches. To solve this problem, the
indicator variable approach (Nomikos and
MacGregor, 1994) was used to synchronize the 
process trajectories, where the strand length acts as
the indicator variable since it progresses
monotonically in time and has the same starting and
ending value for each start-cast. All process
trajectories of start-casts are synchronized using
interpolation based on a set of predefined scales in the
strand length. The synchronization scales are 
determined by a quadratic function of time such that
it possesses small intervals at the beginning of the
start-cast duration and large intervals at the end. Such 
non-uniform scales provide a better opportunity for
early detection of abnormal situations.

The core concept of the MPCA algorithm is to handle
the resulting 3-dimensional, synchronized dynamic
data. The algorithm first unfolds the 3-dimensional
data block to a 2-dimensional data matrix to preserve
the direction of operations (see Figure 4).
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Fig. 4. 3-Dimensional data unfolding

This is accomplished by the following two steps.
First, the data block is sliced vertically along the
observation direction; next the slices are juxtaposed
to build the data matrix with a large column
dimension such that each row corresponds to a start-
cast. A standard PCA algorithm is then applied to this
unfolded data matrix to build a statistical model for
the deviation of each process variable from its
average trajectory over the start-cast duration, 
benchmarking the operation-to-operation variance
existing in the historical data of normal start-casts.
Similar to the run-time operation monitoring, two
statistics, SPE and HT, are defined at each



observation over the start-cast duration in such a way
that they are able to describe how each start-cast is 
compared with normal operation as described by the
model. As a new start-cast evolves, its deviation from
the average trajectories is examined by comparing it 
to the model. If the new start-cast is statistically
different from normal operation, then an alarm is
generated to indicate the abnormal situation. Once an
alarm is generated, the variables of the new start-cast 
that contribute most to the process deviation are
identified in the contribution plots.

3.3.3. Process Transition Operation Monitoring

The remaining operating condition to monitor for 
involves process transitions. There are some well
defined process transitions involved with the
continuous casting process related to equipment or
product specification changes where abnormal
operation resulting in a breakout can occur. Our
solution to monitoring one important process
transition, the changing of the submerged entry
nozzle, is discussed in detail in the companion paper
at this conference titled: “Industrial Experience on
Process Transition Monitoring for Continuous Steel
Casting Operation”.

3.4. Integrated Monitoring System Architecture

The schematic of the fully integrated on-line
monitoring system for start-cast, process transitions
and the continuous, run-time cast operations is 
depicted in Figure 5. Real-time measurements of
various sensors are collected on-line by a data 
acquisition module, and then sent to an on-line
process monitoring module as well as a historical
database for data archiving purposes. Once the
monitoring module receives the real-time process 
measurements, a series of computations are
performed based on a selected multivariable statistical
model from the model set. 
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Fig. 5. Schematic of the integrated on-line caster 
monitoring system

The monitoring module consists of 4 computation
functions, i.e., start-up monitoring, process transition

monitoring, run-time operation monitoring and
process state determination. The latter is able to
determine the process state based on the current
process conditions (described by casting speed, strand
length, etc…), and automatically selects the 
appropriate model and monitoring function. Five
general process states are defined: shut-down, start-
up, specific process transition, run-time and idle
(which is designed to handle some special operating
conditions). Based on current process conditions, a 
state is determined and the corresponding model
results are presented to the operator. For presentation
simplicity and ease-of-use for the operators, the HMI
screens are identical for all of the operating states and 
transition seamlessly between them.

3.5. Operational Results and Benefits

Since the deployment of the caster monitoring system
at #1 Continuous Caster in April 1997, Dofasco has
enjoyed its highest productivity levels with an 
approximate 50% reduction in breakouts over the last
7 years from its previous best year. The system has 
also aided in early detection of other critical 
operational situations such as mould level sensor
problems. In general, this system has helped operators
have greater confidence in running the caster at 
higher production rates.

The run-time monitoring application at #2 Continuous
Caster was implemented on-line in February 2002.
That year, there were 4 high probability cases of
breakouts that were prevented through the aid of this
new monitoring system. A significant reduction in
breakouts was also observed in 2003, as compared to 
previous years. A portion of the start-cast monitoring
feature was implemented in May 2003 and fully
commissioned January 2004. In 2003, there was one
high probability start-cast breakout case that was 
prevented through the aid of this new monitoring
feature. The process transition monitoring feature is 
still under development.

The run-time monitoring application is patented with
the start-cast and process transition monitoring
features patent pending.

4. ON-LINE PREDICTIVE CONTROL
APPLICATION – DESULPHURIZATION
REAGENT CONTROL (DRC) SYSTEM

4.1. Torpedo Car Desulphurization Process

Dofasco uses a Torpedo Car Desulphurization facility
to remove sulphur from most batches of hot metal in
order for the steel to meet the specified quality
standard. A schematic of the facility is illustrated in
Figure 6. Desulphurization refers to the process of
injecting the hot metal with chemical agents in order
to bind, and thereby remove, a portion of the sulphur
in the metal. At this facility, 2 different reagents are 
utilized.



Fig. 6. Torpedo car desulphurization process

4.2. Motivation for Controller Change

The harsh environment at this facility makes it
challenging to obtain reliable, high-quality process
data. Because of this, only very simple regression
models, utilizing a fraction of the available data, were 
robust enough for the original on-line model-based
control system. An additional concern was that the
maintenance of these models was a time-consuming,
cumbersome task. The operations staff felt there was
room to improve the performance of this control
system in order to better control the reagent usage and
accurately meet downstream sulphur targets. 

4.3. Adaptive PLS Control Strategy

An emprirical modeling methodology was required in
this application because the mechanisms of the
chemical and mechanical effects are not fully
understood. As an approach, PLS was favoured
because it enabled us to most effectively use the 
multitude of highly correlated data available for this
operation. Also, PLS is able to robustly handle
situations where real-time data are missing, a reality
in this application. In the desulphurization
application, it is known that the process does shift and
drift due to changes in the characteristics of the
purchased chemical reactants. Therefore, it is
important that the modeling technology have an
adaptation feature.

Database
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Database
model parameters,
tuning constants,
all data records

Data
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Updated PLSModel Parameters

Reagent
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Target
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Hot Metal Temp
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Etc...

Desulph
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Fig. 7. Adaptive PLS desuphurization reagent control
logic

The control structure developed is illustrated in 
Figure 7. The algorithm used is a modified version of
the Adaptive Modified Kernel Algorithm described in
Dayal and MacGregor (1997a,b). The PLS models at 
the Desulph Station are defined in terms of:

1. 28 values (from Eq. 2) – 14  values for each 
of the two reagents, where each value of  is the
coefficient associated with one of the 14 input
variables (which include initial and target sulphur
values, mass of hot metal, all available chemistry 
data, and process variables such as the type of
torpedo car in use).

2. 14 values – these are the weighted means
for each of the transformed input variables (x).

xm

3. 2 values – these are analogous to the

values but represent the weighted means of the 
transformed output variables (y)

ym xm

4. 14 values – these are the weighted standard 
deviations for each of the transformed x variables 

xw

5. 2 values – these are analogous to the

values but represent the weighted standard
deviations of the transformed y variables

yw xw

Together, these values fully specify the model and
allow the calculation of the required amounts of the
two reagents.  The adaptation algorithm updates the
values of all of these parameters when an appropriate
new set of data is available. The model updating is
done as follows.

The  and values are updated to reflect the 

new data according to:

xm ym

ijijij

ijijij

yymym

xxmxm

,11,1,

,11,1,

)1(

)1(
 (3)

where  is the new weighted average value for 

the j

ijxm ,

th x variable,  is the weighted average

from the previous iteration of the adaptation scheme,
1, ijxm

ijx ,  is the mean of the transformed values for the jth

x-variable in the new dataset, and 1  is a tuning

parameter  that can take on values between zero and
one and determines how quickly old data are
discounted in the adaptation routine.  The y variables
are defined in a similar way.

The  and xw yw  values are updated to reflect

changes in the standard deviations over time
according to:

jijij xxw 2
21,

2
2, )1(  (4)

where  is the weighted variance for the j1,
2

ij
th x-

type variable from the previous time the adaptation



algorithm was executed, ijx , is variance for the

transformed jth x-variables in the new dataset,

is the new value of the weighting factor for the j
ijxw ,

th x-

variable, and 2  is the discounting factor that

determines how much weight is given to previous
values of the variances of the variables.  The yw
values are updated similarly.

The values of the ’s are determined based on the

kernel PLS algorithm using  and .  It is

the  and matrices that are updated using
the new data.  These matrices are used to update the
“old” covariance structures.  This updating is done
using a standard moving average scheme as follows.

XXT YXT

XXT YXT

newcurrentupdated XXXXXX TTT )1( (6)

newcurrentupdated YXYXYX TTT )1(  (7)

The updated correlation matrices are then used to fit a 
new PLS model.  Finally, the kernel PLS algorithm is 
updated in the following manner:

updatedupdatedupdated f YXXX TT , (8)

where updated  represents the new set of all  values.

Note that together with the parameters of the model,

the most recent values for  and must be
stored for use in the next call to the adaptation
algorithm.  One advantage of the kernel algorithm is
that only these matrices need to be stored and not the
original data matrices  and .

XXT YXT

X Y

4.4. On-line Implementation

The initial model was fitted using approximately
three months worth of historical data, which amounts
to a few thousand observations. The initial version of 
the on-line PLS application was implemented in July
1995. It was integrated into the operation as a PC 
based control system with an easy-to-use Visual 
Basic HMI. In 2000, changes to operating practices 
required a new model algorithm to handle multiple
(co-injected) reagents. The updated PLS control
strategy, which included the adaptation feature, was
implemented in September 2000.

In demonstrating the new control system
performance, Figure 8 shows the “before” and “after”
histograms for the distribution of the final sulphur
values for one aim.  Approximately three months
worth of data for both periods of operation were used
to generate the frequency values for each distribution.
The figure shows that the new model provided more
precise estimates of the amounts of reagent required
(narrowed the distribution) and this allowed Dofasco
to move its target sulphur values closer to the
constraint.

Fig. 8. Distributions of End Sulphur values before and
after the implementation of the adaptive PLS model

In demonstrating the adaptation capability, Figure 9
shows a plot of the predicted quantities of reagent
required to achieve a desired desulphurization (based
on the PLS model) versus the amounts of reagent
actually used to achieve the result.  If the models
were perfect and there was no noise in the data, this
plot would be a straight line with a slope of one.
There are two groups of data shown on this plot. The
red diamonds represent data based on a PLS model
with no adaptation. The black stars are points that 
were generated using an adaptive PLS model.  Both
groups of data show remarkably good clustering close
to the diagonal line indicating that reliable predictions
are possible despite noise in the raw data. However,
the static results show a slight upwards offset from
the adaptive results.  This represents a small bias in
the static model such that it is consistently predicting
slightly too much reagent required.  Even a small bias
like this can result in substantial over-consumption of
reagent over the long term.  Model adaptation
eliminates the offset and provides assurance that the
model is reliable and up-to-date.

Fig. 9. Predicted versus actual reagent quantities.
(KEY: red diamonds - without adaptation; black
stars - with adaptation)

4.5. Operational Results



There was immediate positive feedback from 
operations on the performance of the new PLS 
reagent control system as compared to the previous 
model-based control system. At the end of 1995, a 
formal audit of the new control system was 
established. The results were: (1) the root mean 
square (RMS) error between the aim and final sulphur 
was reduced by 50%, (2) the re-desulphurization rate 
(i.e. the times where a second reagent addition is 
necessary to meet target) was reduced by 70%, (3) the 
amount of reagent purchased was reduced by 8.5%, 
and (4) the process iron yield was improved by 0.25% 
due to less iron tied up in slag. The performance of 
the enhanced adaptive PLS algorithm was also
excellent, with minimal model maintenance effort 
being required. Since the introduction of the co-
injection operating strategy, improvement initiatives 
(i.e. the adaptive PLS model, automation upgrades 
and new operating practices) have achieved another 
17% reduction in reagent consumption (Quinn et al., 
2002), while accurately meeting sulphur targets. 
Improved process understanding and process control 
have helped in unforeseen ways.  For example, our 
relationships with our supplies have improved 
because our combined expertise has been maximized
- Dofasco is the process expert, while the suppliers 
are the product experts.

The adaptive PLS desulphurization reagent control 
system is patented. 

5. CONSIDERATIONS FOR FURTHER MVS 
BASED INVESTIGATIONS 

Through the experiences of implementing on-line 
MVS applications at Dofasco, much has been learned 
about what it takes to successfully commission such 
applications. In our opinion, there are several 
challenges that industrial practitioners will have to 
overcome to be able to effectively utilize the full 
potential of this technology in on-line applications. In 
general, what is needed is a flexible, industrially-
focussed, methodology for applying MVS 
technology. The success of this technology in 
industry will be directly related to the availability of 
MVS systems that are useable and understandable by 
people of varying technical backgrounds. In our 
experience, MVS solutions in industry need to pay 
special attention to issues that can be categorized 
under the following headings:  (1) identifying and 
defining appropriate application scope, (2) data 
gathering / preprocessing, (3) off-line modeling to on-
line solution, and (4) long-term maintenance 
strategies.  These are discussed further below. In 
identifying these issues, we have also tried to provide 
suggestions on how to address them; however, we 
believe that many of these issues remain open areas 
for research and we hope this paper may open new 
academic and industrial work in these areas. 

5.1. Identifying and Defining an Appropriate Scope 

In an industrial setting, it is necessary to be able state 
the economic justification. In this regard, the 
practitioner must be able to determine if the capability 
and applicability of the MVS technology makes sense 
over alternate technologies. Similarly, one must 
define the appropriate modeling strategy necessary to 
handle many complex operating situations such as: 
many different products produced by a process, large 
feed rate changes, recycle processes, and more 
complicated batch processing.  We believe that
academic studies on applying MVS in these cases 
would be beneficial, and that results could be 
compelling in defining project scope for future 
industrial MVS work. We stress this because we have 
found that appropriately defining scope for the 
application greatly improves its chances of long-term 
success. For example, it is important to determine 
how small or how big a modeling application should 
be, and whether it is better to have many small 
applications versus one large application. Defining 
these matters at the outset of a project will impact 
many issues from long-term maintenance to data 
acquisition and processing.  

5.2. Data Gathering and Data Preprocessing 

We have found that a key to success in any 
multivariate statistical application is the early 
involvement of process experts. Although 
multivariate statistical models are empirical models,
having access to expert advice on which variables are 
“known” to be important and what transformations or 
combinations of variables may be important, can 
affect not only the speed of development of a system 
but also its ultimate success. Furthermore, process 
experts are usually helpful in constructing appropriate 
training and validation data sets if historical data is to 
be used. Should there prove to be a need for designed 
experimentation, process experts can help in that too. 
Ultimately, process experts are required in 
determining the depth and breadth of data to cover the 
operating window of the process. In most cases we
have encountered, it was important that data pre-
processing take into account operation-specific needs 
which may include: non steady-state process 
dynamics, non-stationary process conditions, non-
linear process conditions, and large process dead-
times. We suggest more in-depth collaboration 
between industry and academia in developing an 
understanding of industrial data sets and, data 
presentation and visualization needs. 

5.3. Application of Models On-line 

Typically, the first step in putting an MVS model on-
line is justifying the proposal to do so.  This involves 
quantifying the benefits in terms of cost, revenue, 
safety and/or quality.  Therefore, meaningful 
measures of the applicable benefits should be 
developed and computed.  What these criteria are will 
depend on the application, but typically they are 
related to the performance of the process or expected 
changes in the performance as opposed to being 



related to model performance such as the percentage 
of variability explained by the model. For example, in 
monitoring and fault detection applications, tuning of 
the alarm levels is very important. Although some 
academics advocate setting limits based on a choice 
of a probability (tail) value, tuning limits based on 
achieving a desired average run length (ARL) may be 
more useful in some instances, especially relative to 
economic costs incurred while using control charts 
where process adjustments are made based on both T2

and Q2. We suggest more academic work be 
preformed on statistical topics such as this, perhaps 
following Box and Jenkins (1963), Box and Kramer 
(1992), and Lorenzen and Vance (1986). 

5.4. Long-term Maintenance Strategies 

Having long-term maintenance strategies in place is
important in ensuring success. Typically, the 
sophistication of these strategies is determined by the 
rate at which the process is expected to change (i.e. 
how often it is expected that the models or alarm 
limits will need tuning). In cases where the process is 
known to shift or drift over relatively short time 
periods, it may be necessary to consider on-line 
adaptation, among other things. Especially in the area 
of maintenance strategies, we believe that there is still 
research to be done. The following are areas we feel 
require further work: on-line adaptation of alarm 
limits in monitoring applications, monitoring the 
performance of MVS systems to determine when 
tuning / remodeling is required, methods for 
expediting the remodeling process when a major 
change is made to the process, and simple and 
efficient ways to minimize the number of models and 
limits that need to be maintained. Dofasco has 
developed internal methodologies to address some of 
these needs, however, there is a significant 
opportunity to further address these for the benefit of 
all process industries. 

6. REFLECTIONS, SUMMARY, CONCLUSIONS
AND FUTURE DIRECTIONS 

This paper has described two important on-line MVS-
based applications at Dofasco that continue to provide 
significant value to the company. Since our first off-
line analysis in 1993, we have utilized MVS-based 
technologies on over 70 applications. These areas can
be categorized in the following groups: (1) off-line 
process analysis / troubleshooting, (2) on-line process 
monitoring, and (3) on-line model-based control. To 
date, Dofasco has implemented 9 on-line MVS-based 
applications, 6 in the area of process monitoring and 3 
in model-based control strategies. The remainder 
involve off-line process analysis / troubleshooting. 
Off-line process analysis is a prerequisite proof-of-
concept activity that provides justification for moving 
forward with on-line applications. Off-line 
troubleshooting applications typically involve 
discovering specific insight hidden within a large 
dataset to support a team effort to fix a problem. The 
applicability of this technology over a wide range of 

problems / opportunities that we deal with make it a 
very valuable tool for the company. 

Multivariate Statistical technologies have been 
successful at Dofasco because of the support provided 
at all levels of management. The MVS applications 
developed at Dofasco stem from a structured 
approach in developing applications, and have 
delivered valuable business results that can be related 
to company profits. The MVS applications have 
proven to be robust to many practical matters such as 
missing data, and have proven to be amenable to 
various maintenance and updating strategies. MVS 
provides models and control chart schemes that are
readily understood by production personnel once 
training is provided. Although MVS methods use 
many process variables simultaneously for modeling 
and fault detection, the methods provide a built-in 
means of relating SPC chart, and model calculations 
to the individual variables used for modeling. This 
has facilitated troubleshooting and process diagnosis 
on the part of shop floor personnel, and has helped in 
building acceptance of the MVS methods.

Perhaps more than anything else, operator (final user) 
acceptance is critical to the long-term success of an 
on-line MVS system. Early involvement of the 
operators in the design of the user interfaces has 
proven beneficial in our experience. Also, seeking
advice from the operators early, and throughout the 
process has helped in acceptance of the system, and 
has helped alleviate feelings of being intimidated by 
the technology. Operators often have very good 
suggestions on how to integrate the new technology 
into existing control room infrastructure and / or how 
to incorporate signals and information from other 
systems into the new MVS system.

This paper has addressed many technical and 
operational issues in the on-line application of MVS 
technology. We note here that there are also other 
corporate issues that need to be considered. The most 
critical and perhaps the most difficult to quantify or 
influence is that of having a corporate culture to 
support this type of development. For Dofasco, this 
has meant that a willingness to perform MVS work
and to manage it in the form of an engineering project 
was necessary. When coupled with project 
management methods, periodic project evaluation, 
and the on-going development of computer 
infrastructure, the framework we presented has 
helped to create success and has led to changes in the 
way analysis work is done in general. The success of 
the MVS, and other, often much larger, data-driven 
projects has led to more use of data by shop floor 
personnel during daily activities like production 
meetings, more discussion on how to improve quality, 
and most importantly, more ideas on how to use 
available data to improve production methods and 
products.  

Dofasco’s vision to the future for MVS technologies 
is to “institutionalize” it throughout the corporation



by: (1) maximizing the understanding and benefits of 
this technology through technical awareness and 
training, (2) integrating, where appropriate, the
technology into our corporate quality initiatives, and 
(3) continuing to build technical breadth and depth 
while leveraging leading-edge aspects of the 
technology with the academic experts (especially with 
linkages at McMaster University). To facilitate the 
propagation of this technology throughout the 
corporation, Dofasco has developed an in-house 
generic software platform for on-line MVS-based 
solutions. This platform is architected with all the 
latest open system features for application on various 
computing platforms that are resident in the company. 
This also facilitates and simplifies the long-term 
maintenance of a growing application base. 

In general, Dofasco will continue to leverage 
multivariate statistical methods, with other advanced 
automation technologies, to develop new, high-valued 
on-line control and monitoring applications. 
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